Skip to main content

Advertisement

Log in

Porcine epidemic diarrhea virus uses cell-surface heparan sulfate as an attachment factor

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

It is well known that many viruses use heparan sulfate as the initial attachment factor. In the present study, we determined whether porcine epidemic diarrhea virus (PEDV), an emerging veterinary virus, infects Vero cells by attaching to heparan sulfate. Western blot analysis, real-time PCR, and plaque formation assay revealed that PEDV infection was inhibited when the virus was pretreated with heparin (an analogue of heparan sulfate). There was no inhibitory effect when the cells were pre-incubated with heparin. We next demonstrated that enzymatic removal of the highly sulfated domain of heparan sulfate by heparinase I treatment inhibited PEDV infection. We also confirmed that sodium chlorate, which interferes with heparan sulfate biosynthesis, also inhibited PEDV infection. Furthermore, we examined the effect of two heparin derivatives with different types of sulfation on PEDV infection. The data suggested de-N-sulfated heparin, but not N-acetyl-de-O-sulfated heparin, inhibits PEDV infection. In summary, our studies revealed that heparan sulfate acts as the attachment factor of PEDV in Vero cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen J, Wang C, Shi H, Qiu H, Liu S et al (2010) Molecular epidemiology of porcine epidemic diarrhea virus in China. Arch Virol 155:1471–1476

    Article  CAS  PubMed  Google Scholar 

  2. Chen X, Yang J, Yu F, Ge J, Lin T et al (2012) Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) samples from field cases in Fujian, China. Virus Genes 45:499–507

    Article  CAS  PubMed  Google Scholar 

  3. Li Z, Chen F, Yuan Y, Zeng X, Wei Z et al (2013) Sequence and phylogenetic analysis of nucleocapsid genes of porcine epidemic diarrhea virus (PEDV) strains in China. Arch Virol 158:1267–1273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Li WT, Li H, Liu YB, Pan YF, Deng F et al (2012) New variants of porcine epidemic diarrhea virus, China, 2011. Emerg Infect Dis 18:1350–1353

    Article  PubMed Central  PubMed  Google Scholar 

  5. Li ZL, Zhu L, Ma JY, Zhou QF, Song YH et al (2012) Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field strains in south China. Virus Genes 45:181–185

    Article  PubMed  Google Scholar 

  6. Fan JH, Zuo YZ, Li JH, Pei LH (2012) Heterogeneity in membrane protein genes of porcine epidemic diarrhea viruses isolated in China. Virus Genes 45:113–117

    Article  CAS  PubMed  Google Scholar 

  7. Sun RQ, Cai RJ, Chen YQ, Liang PS, Chen DK et al (2012) Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg Infect Dis 18:161–163

    Article  PubMed Central  PubMed  Google Scholar 

  8. Huang YW, Dickerman AW, Pineyro P, Li L, Fang L et al (2013) Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio 4:e00737-13

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bridgen A, Duarte M, Tobler K, Laude H, Ackermann M (1993) Sequence determination of the nucleocapsid protein gene of the porcine epidemic diarrhoea virus confirms that this virus is a coronavirus related to human coronavirus 229E and porcine transmissible gastroenteritis virus. J Gen Virol 74(Pt 9):1795–1804

    Article  CAS  PubMed  Google Scholar 

  10. Song D, Park B (2012) Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 44:167–175

    Article  CAS  PubMed  Google Scholar 

  11. Haywood AM (1994) Virus receptors: binding, adhesion strengthening, and changes in viral structure. J Virol 68:1–5

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Esko JD, Kimata K, Lindahl U (2009) Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory, NY

    Google Scholar 

  13. Barth H, Schafer C, Adah MI, Zhang F, Linhardt RJ et al (2003) Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem 278:41003–41012

    Article  CAS  PubMed  Google Scholar 

  14. Honke K, Taniguchi N (2002) Sulfotransferases and sulfated oligosaccharides. Med Res Rev 22:637–654

    Article  CAS  PubMed  Google Scholar 

  15. Hileman RE, Fromm JR, Weiler JM, Linhardt RJ (1998) Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20:156–167

    Article  CAS  PubMed  Google Scholar 

  16. Giroglou T, Florin L, Schafer F, Streeck RE, Sapp M (2001) Human papillomavirus infection requires cell surface heparan sulfate. J Virol 75:1565–1570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Byrnes AP, Griffin DE (1998) Binding of Sindbis virus to cell surface heparan sulfate. J Virol 72:7349–7356

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Tamura M, Natori K, Kobayashi M, Miyamura T, Takeda N (2004) Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J Virol 78:3817–3826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD et al (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3:866–871

    Article  CAS  PubMed  Google Scholar 

  20. Patel M, Yanagishita M, Roderiquez G, Bou-Habib DC, Oravecz T et al (1993) Cell-surface heparan sulfate proteoglycan mediates HIV-1 infection of T-cell lines. AIDS Res Hum Retroviruses 9:167–174

    Article  CAS  PubMed  Google Scholar 

  21. Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3

  22. Matos PM, Andreu D, Santos NC, Gutierrez-Gallego R (2014) Structural requirements of glycosaminoglycans for their interaction with HIV-1 envelope glycoprotein gp120. Arch Virol 159:555–560

    Article  CAS  PubMed  Google Scholar 

  23. Dreyfuss JL, Regatieri CV, Jarrouge TR, Cavalheiro RP, Sampaio LO et al (2009) Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. An Acad Bras Cienc 81:409–429

    Article  CAS  PubMed  Google Scholar 

  24. Shriver Z, Capila I, Venkataraman G, Sasisekharan R (2012) Heparin and heparan sulfate: analyzing structure and microheterogeneity. Handb Exp Pharmacol 207:159–176

    CAS  PubMed  Google Scholar 

  25. Germi R, Crance JM, Garin D, Guimet J, Lortat-Jacob H et al (2002) Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology 292:162–168

    Article  CAS  PubMed  Google Scholar 

  26. Delputte PL, Vanderheijden N, Nauwynck HJ, Pensaert MB (2002) Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages. J Virol 76:4312–4320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Salvador B, Sexton NR, Carrion R Jr, Nunneley J, Patterson JL et al (2013) Filoviruses utilize glycosaminoglycans for their attachment to target cells. J Virol 87:3295–3304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tan CW, Poh CL, Sam IC, Chan YF (2013) Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol 87:611–620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Klimstra WB, Ryman KD, Johnston RE (1998) Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J Virol 72:7357–7366

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Desai UR, Wang HM, Linhardt RJ (1993) Specificity studies on the heparin lyases from Flavobacterium heparinum. Biochemistry 32:8140–8145

    Article  CAS  PubMed  Google Scholar 

  31. Rostand KS, Esko JD (1997) Microbial adherence to and invasion through proteoglycans. Infect Immun 65:1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Farley JR, Nakayama G, Cryns D, Segel IH (1978) Adenosine triphosphate sulfurylase from Penicillium chrysogenum equilibrium binding, substrate hydrolysis, and isotope exchange studies. Arch Biochem Biophys 185:376–390

    Article  CAS  PubMed  Google Scholar 

  33. Guibinga GH, Miyanohara A, Esko JD, Friedmann T (2002) Cell surface heparan sulfate is a receptor for attachment of envelope protein-free retrovirus-like particles and VSV-G pseudotyped MLV-derived retrovirus vectors to target cells. Mol Ther 5:538–546

    Article  CAS  PubMed  Google Scholar 

  34. Li BX, Ma GP, Ge JW, Li YJ (2009) Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Bing Du Xue Bao 25:220–225

    CAS  PubMed  Google Scholar 

  35. Seki Y, Mizukura M, Ichimiya T, Suda Y, Nishihara S et al (2012) O-sulfate groups of heparin are critical for inhibition of ecotropic murine leukemia virus infection by heparin. Virology 424:56–66

    Article  CAS  PubMed  Google Scholar 

  36. Martinez I, Melero JA (2000) Binding of human respiratory syncytial virus to cells: implication of sulfated cell surface proteoglycans. J Gen Virol 81:2715–2722

    CAS  PubMed  Google Scholar 

  37. Trybala E, Bergstrom T, Spillmann D, Svennerholm B, Olofsson S et al (1996) Mode of interaction between pseudorabies virus and heparan sulfate/heparin. Virology 218:35–42

    Article  CAS  PubMed  Google Scholar 

  38. Trybala E, Liljeqvist JA, Svennerholm B, Bergstrom T (2000) Herpes simplex virus types 1 and 2 differ in their interaction with heparan sulfate. J Virol 74:9106–9114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Rider CC, Coombe DR, Harrop HA, Hounsell EF, Bauer C et al (1994) Anti-HIV-1 activity of chemically modified heparins: correlation between binding to the V3 loop of gp120 and inhibition of cellular HIV-1 infection in vitro. Biochemistry 33:6974–6980

    Article  CAS  PubMed  Google Scholar 

  40. Hallak LK, Spillmann D, Collins PL, Peeples ME (2000) Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J Virol 74:10508–10513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Raman K, Mencio C, Desai UR, Kuberan B (2013) Sulfation patterns determine cellular internalization of heparin-like polysaccharides. Mol Pharm 10:1442–1449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (A0201200499) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-jie Fan or Xiang Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huan, Cc., Wang, Y., Ni, B. et al. Porcine epidemic diarrhea virus uses cell-surface heparan sulfate as an attachment factor. Arch Virol 160, 1621–1628 (2015). https://doi.org/10.1007/s00705-015-2408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2408-0

Keywords

Navigation