Skip to main content
Log in

Modulation of Wnt signaling pathway by hepatitis B virus

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Hepatitis B virus (HBV) has a global distribution and is one of the leading causes of hepatocellular carcinoma. The precise mechanism of pathogenicity of HBV-associated hepatocellular carcinoma (HCC) is not yet fully understood. Viral-related proteins are known to take control of several cellular pathways like Wnt/β-catenin, TGF-β, Raf/MAPK and ROS for the virus’s own replication. This affects cellular persistence, multiplication, migration, alteration and genomic instability. The Wnt/FZD/β-catenin signaling pathway plays a significant role in the pathology and physiology of the liver and has been identified as a main factor in HCC development. The role of β-catenin is linked mainly to the canonical pathway of the signaling system. Progression of liver diseases is known to be accompanied by disturbances in β-catenin expression (mainly overexpression), with its cytoplasmic or nuclear translocation. In recent years, studies have documented that the HBV X protein and hepatitis B surface antigen (HBsAg) can act as pathogenic factors that are involved in the modulation and induction of canonical Wnt signaling pathway. In the present review we explore the interaction of HBV genome products with components of the Wnt/β–catenin signaling pathway that results in the enhancement of the pathway and leads to hepatocarcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tong S, Revill P (2016) Overview of hepatitis B viral replication and genetic variability. J Hepatol 64(1):S4–S16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schinazi RF, Asselah T (2017) From HCV To HBV Cure. Liver Int 37(S1):73–80

    Article  PubMed  Google Scholar 

  3. Liang TJ (2009) Hepatitis B: the virus and disease. Hepatology 49(S5):S13–S21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Milich D, Liang TJ (2003) Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology 38(5):1075–1086

    Article  CAS  PubMed  Google Scholar 

  5. Han Y et al (2013) Regulation of B7-H1 expression on peripheral monocytes and IFN-γ secretion in T lymphocytes by HBeAg. Cell Immunol 283(1):25–30

    Article  CAS  PubMed  Google Scholar 

  6. Chen M et al (2005) Immune tolerance split between hepatitis B virus precore and core proteins. J Virol 79(5):3016–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xie K-L et al (2014) MicroRNAs associated with HBV infection and HBV-related HCC. Theranostics 4(12):1176

    Article  PubMed  PubMed Central  Google Scholar 

  8. Miller RH, Robinson WS (1986) Common evolutionary origin of hepatitis B virus and retroviruses. Proc Natl Acad Sci 83(8):2531–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murakami S (2001) Hepatitis B virus X protein: a multifunctional viral regulator. J Gastroenterol 36(10):651–660

    Article  CAS  PubMed  Google Scholar 

  10. Feitelson MA, Duan L-X (1997) Hepatitis B virus X antigen in the pathogenesis of chronic infections and the development of hepatocellular carcinoma. Am J Pathol 150(4):1141

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Li J et al (2016) Unusual features of sodium taurocholate cotransporting polypeptide as a hepatitis B virus receptor. J Virol 90(18):8302–8313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Urban S et al (2010) The replication cycle of hepatitis B virus. J Hepatol 52(2):282–284

    Article  PubMed  Google Scholar 

  13. Rajbhandari R, Chung RT (2016) Treatment of hepatitis B: a concise review. Clin Transl Gastroenterol 7(9):e190

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bhattacharya D, Thio CL (2010) Review of hepatitis B therapeutics. Clin Infect Dis 51(10):1201–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grimm D, Thimme R, Blum HE (2011) HBV life cycle and novel drug targets. Hepatol Int 5(2):644–653

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen GF, Wang C, Lau G (2017) Treatment of chronic hepatitis B infection-2017. Liver Int 37(S1):59–66

    Article  CAS  PubMed  Google Scholar 

  17. Bejsovec A (2006) Flying at the head of the pack: Wnt biology in Drosophila. Oncogene 25(57):7442–7449

    Article  CAS  PubMed  Google Scholar 

  18. Brunt LH et al (2017) Wnt Signalling controls the response to mechanical loading during zebrafish joint development. 115105 (bioRxiv2017)

  19. Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127(3):469–480

    Article  CAS  PubMed  Google Scholar 

  20. Kumawat K, Gosens R (2016) WNT-5A: signaling and functions in health and disease. Cell Mol Life Sci 73(3):567–587

    Article  CAS  PubMed  Google Scholar 

  21. Ockeloen CW et al (2016) Novel mutations in LRP6 highlight the role of WNT signaling in tooth agenesis. Genet Med 18(11):1158–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mulligan KA, Cheyette BN (2016) Neurodevelopmental perspectives on Wnt signaling in psychiatry. Mol Neuropsychiatry 2(4):219–246

    Article  CAS  Google Scholar 

  23. Skronska-Wasek W et al (2017) Reduced Frizzled receptor 4 expression prevents WNT/β-catenin-driven alveolar lung repair in COPD. Am J Respir Crit Care Med. doi:10.1164/rccm.201605-0904OC

    PubMed  Google Scholar 

  24. Takahashi H et al (2017) Possible role of nuclear β-catenin in resistance to preoperative chemoradiotherapy in locally advanced rectal cancer. Histol. doi:10.1111/his.13227

    Google Scholar 

  25. MacDonald BT, Tamai K, He X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huelsken J, Behrens J (2002) The Wnt signalling pathway. J Cell Sci 115(21):3977–3978

    Article  CAS  PubMed  Google Scholar 

  27. Hart M et al (1999) The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr Biol 9(4):207–211

    Article  CAS  PubMed  Google Scholar 

  28. Kimelman D, Xu W (2006) β-Catenin destruction complex: insights and questions from a structural perspective. Oncogene 25(57):7482–7491

    Article  CAS  PubMed  Google Scholar 

  29. Liu C et al (1999) β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci 96(11):6273–6278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu C et al (2002) Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108(6):837–847

    Article  CAS  PubMed  Google Scholar 

  31. Price MA (2006) CKI, there’s more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev 20(4):399–410

    Article  CAS  PubMed  Google Scholar 

  32. Ozawa M, Baribault H, Kemler R (1989) The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 8(6):1711

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pez F et al (2013) Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J Hepatol 59(5):1107–1117

    Article  CAS  PubMed  Google Scholar 

  34. Laurent-Puig P, Zucman-Rossi J (2006) Genetics of hepatocellular tumors. Oncogene 25(27):3778–3786

    Article  CAS  PubMed  Google Scholar 

  35. Arbuthnot P, Kew M (2001) Hepatitis B virus and hepatocellular carcinoma. Int J Exp Pathol 82(2):77–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Levrero M, Zucman-Rossi J (2016) Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol 64(1):S84–S101

    Article  CAS  PubMed  Google Scholar 

  37. Huang H et al (1999) β-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am J Pathol 155(6):1795–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hsu H-C et al (2000) β-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 157(3):763–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong CM, Fan ST, Ng IO (2001) β-catenin mutation and overexpression in hepatocellular carcinoma. Cancer 92(1):136–145

    Article  CAS  PubMed  Google Scholar 

  40. Zucman-Rossi J et al (2007) Differential effects of inactivated Axin1 and activated β-catenin mutations in human hepatocellular carcinomas. Oncogene 26(5):774–780

    Article  CAS  PubMed  Google Scholar 

  41. Cieply B et al (2009) Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene. Hepatology 49(3):821–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Austinat M et al (2008) Correlation between beta-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma. Mol Cancer 7(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tornesello ML et al (2013) Mutations in TP53, CTNNB1 and PIK3CA genes in hepatocellular carcinoma associated with hepatitis B and hepatitis C virus infections. Genomics 102(2):74–83

    Article  CAS  PubMed  Google Scholar 

  44. Amit S et al (2002) Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev 16(9):1066–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yost C et al (1996) The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10(12):1443–1454

    Article  CAS  PubMed  Google Scholar 

  46. Park JY et al (2005) Mutations of β-catenin and AXIN I genes are a late event in human hepatocellular carcinogenesis. Liver Int 25(1):70–76

    Article  CAS  PubMed  Google Scholar 

  47. Jain S et al (2011) Methylation of the CpG sites only on the sense strand of the APC gene is specific for hepatocellular carcinoma. PLoS One 6(11):e26799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee H-H et al (2009) Wnt-1 protein as a prognostic biomarker for hepatitis B-related and hepatitis C-related hepatocellular carcinoma after surgery. Cancer Epidemiol Biomark Prevent 18(5):1562–1569

    Article  CAS  Google Scholar 

  49. Cha MY et al (2004) Hepatitis B virus X protein is essential for the activation of Wnt/β-catenin signaling in hepatoma cells. Hepatology 39(6):1683–1693

    Article  CAS  PubMed  Google Scholar 

  50. Kim M et al (2008) Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/β-catenin signaling pathway in hepatocellular carcinoma cells. J Hepatol 48(5):780–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin X et al (2013) Differential expression of Wnt pathway genes in sporadic hepatocellular carcinomas infected with hepatitis B virus identified with OligoGE arrays. Hepatitis Mon 13(1):e6192

    Google Scholar 

  52. Tamori A et al (2005) Alteration of gene expression in human hepatocellular carcinoma with integrated hepatitis B virus DNA. Clin Cancer Res 11(16):5821–5826

    Article  CAS  PubMed  Google Scholar 

  53. Boyault S et al (2007) Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45(1):42–52

    Article  CAS  PubMed  Google Scholar 

  54. Park N, Song I, Chung Y (2006) Chronic hepatitis B in hepatocarcinogenesis. Postgrad Med J 82(970):507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee J-O et al (2005) Hepatitis B virus X protein represses E-cadherin expression via activation of DNA methyltransferase 1. Oncogene 24(44):6617–6625

    Article  CAS  PubMed  Google Scholar 

  56. Nelson WJ, Nusse R (2004) Convergence of Wnt, β-catenin, and cadherin pathways. Science 303(5663):1483–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lara-Pezzi E et al (2001) The hepatitis B virus HBx protein induces adherens junction disruption in a src-dependent manner. Oncogene 20(26):3323–3331

    Article  CAS  PubMed  Google Scholar 

  58. Xie Q et al (2014) Epigenetic silencing of SFRP1 and SFRP5 by hepatitis B virus X protein enhances hepatoma cell tumorigenicity through Wnt signaling pathway. Int J Cancer 135(3):635–646

    Article  CAS  PubMed  Google Scholar 

  59. Takagi H et al (2008) Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma. J Gastroenterol 43(5):378–389

    Article  PubMed  Google Scholar 

  60. Hsieh A et al (2011) Hepatitis B viral X protein interacts with tumor suppressor adenomatous polyposis coli to activate Wnt/β-catenin signaling. Cancer Lett 300(2):162–172

    Article  CAS  PubMed  Google Scholar 

  61. Chen Z et al (2016) HBx mutations promote hepatoma cell migration through the Wnt/β-catenin signaling pathway. Cancer Sci 107(10):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuo C-Y et al (2008) HBx inhibits the growth of CCL13-HBX-stable cells via the GSK-3/-catenin cascade. Intervirology 51(2):130–136

    Article  CAS  PubMed  Google Scholar 

  63. Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287(5458):1606–1609

    Article  CAS  PubMed  Google Scholar 

  64. Wang Q et al (2012) A mutant of hepatitis B virus X protein (HBxΔ127) promotes cell growth through a positive feedback loop involving 5-lipoxygenase and fatty acid synthase. Neoplasia 12(2):103-IN3

  65. Jung JK et al (2007) Hepatitis B virus X protein differentially affects the ubiquitin-mediated proteasomal degradation of β-catenin depending on the status of cellular p53. J Gen Virol 88(8):2144–2154

    Article  CAS  PubMed  Google Scholar 

  66. Ostuni A et al (2013) The hepatitis B x antigen anti-apoptotic effector URG7 is localized to the endoplasmic reticulum membrane. FEBS Lett 587(18):3058–3062

    Article  CAS  PubMed  Google Scholar 

  67. Lian Z et al (2006) Enhanced cell survival of Hep3B cells by the hepatitis B × antigen effector, URG11, is associated with upregulation of β-catenin. Hepatology 43(3):415–424

    Article  CAS  PubMed  Google Scholar 

  68. Pan J et al (2007) The hepatitis B x antigen effector, URG7, blocks tumour necrosis factor α-mediated apoptosis by activation of phosphoinositol 3-kinase and β-catenin. J Gen Virol 88(12):3275–3285

    Article  CAS  PubMed  Google Scholar 

  69. Sun Q et al (2014) Notch1 promotes hepatitis B virus X protein-induced hepatocarcinogenesis via Wnt/β-catenin pathway. Int J Oncol 45(4):1638–1648

    Article  CAS  PubMed  Google Scholar 

  70. Tian Y et al (2017) HBx promotes cell proliferation by disturbing the cross-talk between miR-181a and PTEN. Sci Rep 7:40089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee S et al (2016) Hepatitis B virus X protein enhances Myc stability by inhibiting SCFSkp2 ubiquitin E3 ligase-mediated Myc ubiquitination and contributes to oncogenesis. Oncogene 35(14):1857–1867

    Article  CAS  PubMed  Google Scholar 

  72. Blumberg BS, Alter HJ (1965) A new antigen in leukemia sera. JAMA 191(7):541–546

    Article  CAS  PubMed  Google Scholar 

  73. Tian X et al (2007) Gene-expression profiles of a hepatitis B small surface antigen-secreting cell line reveal upregulation of lymphoid enhancer-binding factor 1. J Gen Virol 88(11):2966–2976

    Article  CAS  PubMed  Google Scholar 

  74. Tian X et al (2009) Role of hepatitis B surface antigen in the development of hepatocellular carcinoma: regulation of lymphoid enhancer-binding factor 1. J Exp Clin Cancer Res 28(1):1

    Article  CAS  Google Scholar 

  75. Komiya Y, Habas R (2008) Wnt signal transduction pathways. Organogenesis 4(2):68–75

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sasai N et al (2004) The neurotrophin-receptor-related protein NRH1 is essential for convergent extension movements. Nat Cell Biol 6(8):741–748

    Article  CAS  PubMed  Google Scholar 

  77. Lu W et al (2004) Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119(1):97–108

    Article  CAS  PubMed  Google Scholar 

  78. Lu X et al (2004) PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates. Nature 430(6995):93–98

    Article  CAS  PubMed  Google Scholar 

  79. Nishita M et al (2006) Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J Cell Biol 175(4):555–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. He X et al (2004) LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131(8):1663–1677

    Article  CAS  PubMed  Google Scholar 

  81. Wallingford JB, Habas R (2005) The developmental biology of dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132(20):4421–4436

    Article  CAS  PubMed  Google Scholar 

  82. Cadigan KM, Liu YI (2006) Wnt signaling: complexity at the surface. J Cell Sci 119(3):395–402

    Article  CAS  PubMed  Google Scholar 

  83. Semenov M, He X (2003) Secreted antagonists/modulators of Wnt signaling. In: Kuhl M (ed) Wnt Signaling in Development, pp 16–25

  84. Park E et al (2006) Role of PKA as a negative regulator of PCP signaling pathway during Xenopus gastrulation movements. Dev Biol 292(2):344–357

    Article  CAS  PubMed  Google Scholar 

  85. Herbst A et al (2014) Comprehensive analysis of β-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/β-catenin signaling. BMC Genom 15(1):74

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Mr. Seth Fortmann (University of Alabama, School of Medicine, USA) for editing the manuscript and Mr. Muhammad Shehzad Latif (Floriculture lab, Centre of Excellence in Molecular Biology, University of the Punjab) for helping us with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bushra Ijaz.

Ethics declarations

Funding

The study is not funded by any company or funding agency.

Conflict of interest

All four authors have no institutional or financial competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daud, M., Rana, M.A., Husnain, T. et al. Modulation of Wnt signaling pathway by hepatitis B virus. Arch Virol 162, 2937–2947 (2017). https://doi.org/10.1007/s00705-017-3462-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3462-6

Navigation