Skip to main content
Log in

Interaction of haloperidol with human serum albumin and effect of metal ions on the binding

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The interaction between human serum albumin (HSA) and haloperidol (HPD) was studied by fluorescence and absorption spectroscopy and molecular modeling under physiological conditions. Fluorescence spectroscopic data showed that the fluorescence quenching of HSA was a result of the formation of the HPD–HSA complex. Spectroscopic analysis of the emission quenching at different temperatures revealed that the quenching mechanism of human serum albumin by haloperidol shows a dynamic quenching. The binding constant (K) and the binding sites (n) between haloperidol and HSA were estimated to be 7.94 × 103 dm3 mol−1 and 1.12 at 298 K. The results of thermodynamic parameters, ΔH (− 89.56 kJ mol−1), ΔS (225.94 J mol−1 K−1) and ΔG (− 15.69 kJ mol−1), indicated that the binding process was spontaneous and the van der Waals interactions and hydrogen bonds were the main forces to stabilize the complex. The distance between the donor (HSA) and acceptor (HPD) molecules was obtained according to Förster energy transfer. The effects of metal ions (Ca2+, Mg2+, Cu2+, and Fe3+) on the binding constant of the haloperidol–HSA complex were also investigated. Finally, the binding of haloperidol to HSA was modeled using the molecular docking method. Molecular docking results were in agreement with the experimental conclusions of the thermodynamic parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Petitpas I, Battacharya AA, Twine S, East M, Curry S (2001) J Biol Chem 276:22804

    Article  CAS  Google Scholar 

  2. Dugaiczyk A, Law SW, Dennison OE (1982) Proc Natl Acad Sci USA 79:71

    Article  CAS  Google Scholar 

  3. Sudlow G, Birkett DJ, Wade DN (1975) Mol Pharmacol 11:824

    PubMed  CAS  Google Scholar 

  4. Sudlow G, Birkett DJ, Wade DN (1976) Mol Pharmacol 12:1052

    PubMed  CAS  Google Scholar 

  5. He XM, Carter DC (1992) Nature 358:209

    Article  CAS  Google Scholar 

  6. Curry S, Mandelkow H, Brick P, Franks N (1998) Nat Struct Biol 5:827

    Article  CAS  Google Scholar 

  7. Bhattacharya AA, Curry S, Franks NP (2000) J Biol Chem 275:38731

    Article  CAS  Google Scholar 

  8. Oida T (1986) J Biochem 100:99

    Article  CAS  Google Scholar 

  9. Peters T (1995) All about albumin: biochemistry, genetics, and medical applications. Academic Press, San Diego

    Google Scholar 

  10. Peck ET, Hill S, Williams AM (2008) Pharmacology for anaesthesia and intensive care, 3rd edn. Cambridge University Press, New York

    Book  Google Scholar 

  11. Peluso MJ, Lewis SW, Barnes TR, Jones PB (2012) Br J Psychiatry 200:387

    Article  Google Scholar 

  12. Chien WT, Yip AL (2013) Neuropsychiatr Dis Treat 9:1311

    Article  CAS  Google Scholar 

  13. Seeman P, van Tol HHM (1994) Trends Pharmacol Sci 15:264

    Article  CAS  Google Scholar 

  14. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  15. Carter DC, Ho JX (1994) Adv Protein Chem 45:153

    Article  CAS  Google Scholar 

  16. Lakowicz JR, Weber G (1973) Biochemistry 12:4161

    Article  CAS  Google Scholar 

  17. Chen GZ, Huang XZ, Xu JG, Zheng ZZ, Wang ZB (1990) The methods of fluorescence analysis, 2nd edn. Science Press, Beijing

    Google Scholar 

  18. Naik KM, Nandibewoor ST (2013) Spectrochim Acta A 105:418

    Article  CAS  Google Scholar 

  19. Stojanović SD, Janković SM, Matović ZD, Jakovljević IŽ, Jelić RM (2015) Monatsh Chem 146:399

    Article  CAS  Google Scholar 

  20. Ross PD, Subramanian S (1981) Biochemistry 20:3096

    Article  CAS  Google Scholar 

  21. Azimi O, Emami Z, Salari H, Chamani J (2011) Molecules 16:9792

    Article  CAS  Google Scholar 

  22. Stryer L, Haugland RP (1967) Proc Natl Acad Sci USA 58:719

    Article  CAS  Google Scholar 

  23. Stryer L (1978) Ann Rev Biochem 47:819

    Article  CAS  Google Scholar 

  24. Förster T (1959) Faraday Soc 27:7

    Article  Google Scholar 

  25. Förster T (1965) In: Sinanoglu O (ed) Modern quantum chemistry. Academic Press, New York

    Google Scholar 

  26. Epps DE, Raub TJ, Caiolfa V, Chiari A, Zamai M (1999) J Pharm Pharmacol 51:41

    Article  CAS  Google Scholar 

  27. Valeur B (2001) Molecular fluorescence: principle and applications. Wiley Press, New York

    Book  Google Scholar 

  28. Naik PN, Chimatadar SA, Nandibewoor ST (2010) J Photochem Photobiol B 100:147

    Article  CAS  Google Scholar 

  29. Bal W, Sokołowska M, Kurowska E, Faller P (2013) Biochim Biophys Acta 1830:5444

    Article  CAS  Google Scholar 

  30. Chikvaidze E (1988) Biofizika 33:723

    PubMed  CAS  Google Scholar 

  31. Seedher N, Agarwal P (2010) Drug Metab Drug Interact 25:17

    Article  CAS  Google Scholar 

  32. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30:2785

    Article  CAS  Google Scholar 

  33. Trott O, Olson AJ (2010) Comput J Chem 31:455

    CAS  Google Scholar 

  34. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727

    Article  CAS  Google Scholar 

  35. Wang Z, Sun H, Yao X, Li D, Xu L, Li Y, Tiand S, Hou T (2016) Phys Chem Chem Phys 18:12964

    Article  CAS  Google Scholar 

  36. Petitpas I, Petersen CE, Ha C, Bhattacharya AA, Zunszain PA, Ghuman J, Bhagavan NV, Curry S (2003) Proc Natl Acad Sci USA 100:6440

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearmark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth G, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision D. Gaussian Inc, Wallingford

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Science and Technological Development of the Republic of Serbia for financial support (Grant nos 172016 and III41010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratomir M. Jelić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berić, J.D., Stojanović, S.D., Mrkalić, E.M. et al. Interaction of haloperidol with human serum albumin and effect of metal ions on the binding. Monatsh Chem 149, 2359–2368 (2018). https://doi.org/10.1007/s00706-018-2310-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2310-z

Keywords

Navigation