Skip to main content
Log in

Stability characteristics of suspension flow through wavy-walled channels

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary.

A numerical study of the linear temporal stability characteristics of particulate suspension flow through a converging-diverging symmetric wavy-walled channel is considered. The basic flow is a superposition of plane channel flow of particulate suspension and periodic flow components arising due to the small amplitude sinusoidal waviness of the channel walls. The disturbance equations are derived within the framework of Floquet theory and solved using the spectral collocation method. The effects of small amplitude sinusoidal waviness of the channel walls and those of the presence of particles on the initial growth of the disturbances are examined. Two-dimensional stability calculations for particulate suspensions indicate the presence of fast growing unstable modes that arise due to the waviness of the walls. Neutral stability calculations are performed in the disturbances wavenumber-Reynolds number (α s R e) plane, for the wavy channel with representative values of wavenumber (λ) and the wall amplitude to semi-channel height ratio ( w ) for different values of volume fraction density of the particles (C). It is observed that the critical Reynolds number for transition decreases with increase of w and C. However, the flow can be modulated by suitable wall excitation which in turn can stabilize the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Herbert, T.: Secondary instability of boundary layers. J. Fluid Mech. 29, 731–742 (1967).

    Google Scholar 

  • Morkovin, M. V.: Many faces of transition. In: Viscous drag reduction (Wells, C. S., ed.). New York: Plenum 1969.

  • Benjamin, T. B.: Shearing flow over a wavy boundary. J. Fluid Mech. 6, 161–205 (1959).

    Google Scholar 

  • Benjamin, T. B.: Effects of a flexible boundary on hydrodynamics stability. J. Fluid Mech. 9, 513–532 (1960).

    Google Scholar 

  • Landahl, M. T.: On the stability of laminar incompressible flow over a flexible surface. J. Fluid. Mech. 13, 609–632 (1961).

    Google Scholar 

  • Hains, F. D., Price, J. F.: Effect of a flexible wall on the stability of plane Poiseuille flow. Phys. Fluids 5, 365–374 (1962).

    Google Scholar 

  • Reed, H. L., Saric, W. S., Arnal, D.: Linear stability theory applied to boundary layers. Ann. Rev. Fluid. Mech. 28, 389–428 (1996).

    Google Scholar 

  • Floryan, J. M.: Stability of wall-bounded shear layers in the presence of simulated distributed roughness. J. Fluid Mech. 335, 29–35 (1997).

    Google Scholar 

  • Sobey, I. J.: On the flow through furrowed channels. Part 1 : Calculated flow patterns. J. Fluid. Mech. 96, 1–26 (1980).

    Google Scholar 

  • Von Kerczek, C. H.: The instability of oscillatory plane Poiseuille flow. J. Fluid Mech. 116, 91–114 (1982).

    Google Scholar 

  • Guzman, A. M., Amon, C. H.: Transition to chaos in converging-diverging channel flows: Ruelle-Takens-Newhouse scenario. Phys. Fluids 6, 1994–2002 (1994).

    Google Scholar 

  • Haj-Qasem, E., Khayat, R. E., Straatman, A. G., Steinman, D. A.: On the hydrodynamic stability of pulsatile flow in a plane channel. Phys. Fluids 14, 1938–1943 (2002).

    Google Scholar 

  • Selvarajan, S., Tulapurkara, E. G., Vasanta Ram, V.: Stability characteristics of wavy walled channel flows. Phys. Fluids 11, 579–589 (1999).

  • Hung, T. K., Brown, T. D.: Solid-particle motion in two-dimensional peristaltic flows. J. Fluid. Mech. 73, 77–96 (1976).

    Google Scholar 

  • Kaimal, M. R.: Peristaltic pumping of a Newtonian fluid with particles suspended in it at low Reynolds number under long wavelength approximation. Trans. ASME J. Appl. Mech. 45, 32–36 (1978).

    Google Scholar 

  • Srivastava, L. M., Srivastava, V. P.: Peristaltic transport of a particle-fluid suspension. Trans. ASME J. Biomech. Engng 111, 157–165 (1989).

    Google Scholar 

  • Misra, J. C., Pandey, S. K.: Peristaltic transport of a particle-fluid suspension in a cylindrical tube. Comp. Math. Appl. 28, 131–145 (1994).

    Google Scholar 

  • Usha, R., Senthilkumar, S., Tulapurkara, E. G.: Numerical study of particulate suspension through wavy-walled channels. (submitted).

  • Marble, F. E.: Dynamics of dusty gases. Ann. Rev. Fluid Mech. 2, 397–446 (1971).

    Google Scholar 

  • Ishii, M.: Thermo-fluid dynamic theory of two-phase flow. Paris: Eyrolles 1975.

  • Soo, S. L.: Particulates and continuum: multiphase fluid dynamics. NewYork: Hemisphere 1989.

  • Berlemont, A., Desjonqueres, P., Gouesbet, G.: Particle Lagrangian simulation in turbulent flows. Int. J. Multiphase Flow 19, 19–34 (1990).

    Google Scholar 

  • Di Giovanni, P. R., Lee, S. L.: Impulsive motion in a particle-fluid suspension including particulate volume, density and migration effects. J. Appl. Mech. 41, 35–41 (1974).

  • Drew, D. A.: Mathematical modeling of two-phase flow. Ann. Rev. Fluid Mech. 15, 261–291 (1983).

    Google Scholar 

  • Tam, C. K. W.: The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38, 537–546 (1969).

    Google Scholar 

  • Nayfeh, A. H.: Oscillating two-phase flow through a rigid pipe. AIAA J. 4, 1868–1871 (1966).

    Google Scholar 

  • Chamkha, A. J.: Solutions for fluid-particle flow and heat transfer in a porous channel. Int. J. Engng Sci. 34, 1423–1439 (1996).

    Google Scholar 

  • Jean, T. H., Peddieson, J.: One-dimensional equations and solutions for particulate suspension flows. Int. J. Engng Sci. 35, 803–818 (1997).

    Google Scholar 

  • Apazidis, N.: On two-dimensional laminar flows of a particulate suspension in the presence of gravity field. Int. J. Multiphase Flow 11, 675–698 (1985).

    Google Scholar 

  • Chaturani, P., Bharatiya, S.S.: Magnetic fluid model for two-phase pulsatile flow of blood. Acta Mech. 149, 97–114 (2001).

    Google Scholar 

  • Usha, R., Prema, K.: Interaction of pulsatile and peristaltic transport induced flows of a particle-fluid suspension. ZAMM 78, 207–212 (1998).

    Google Scholar 

  • Drew, D. A., Segal, L. A.: Averaged equations for two-phase flows. Stud. Appl. Math. 50, 233–245 (1971).

    Google Scholar 

  • Batchelor, G. K.: Transport properties of two-phase materials with random structure. Ann. Rev. Fluid Mech. 6, 277–285 (1974).

    Google Scholar 

  • Batchelor, G. K.: Diffusion of particles with hydrodynamics interaction. J. Fluid Mech. 74, 1–29 (1976).

    Google Scholar 

  • Zuber, N.: On the dispersed flow in the laminar flow regime. Chem. Engng Sci. 19, 897–903 (1964).

    Google Scholar 

  • Saffman, P. G.: The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385–400 (1965).

    Google Scholar 

  • Rubinow, S. I., Keller, J .B.: The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11, 447–459 (1965).

    Google Scholar 

  • Soo, S. L.: Pipe flow of suspensions. Appl. Sci. Res. 21, 68–84 (1969).

    Google Scholar 

  • Charm, S. E., Kurland, G. S.: Blood flow and micro-circulation. New York: Wiley 1974.

  • Van Dyke, M.: Perturbation methods in fluid mechanics. Stanford: Parabolic Press 1975.

  • Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral methods in fluid dynamics. Heidelberg: Springer 1988.

  • Selvarajan, S., Tulapurkara, E. G., Vasanta Ram, V.: A numerical study of flow through wavy walled channels. Int. J. Num. Meths. Fluids 26, 519–531 (1998).

  • Coddington, S. A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1965.

  • Orszag, S. A.: Accurate solution of the Orr-Sommerfeld stability equations. J. Fluid Mech. 50, 689–703 (1971).

    Google Scholar 

  • Drew, D. A., Lahey, R. T.: Phase distribution mechanisms in turbulent low-quality two-phase flow in a circular pipe. J. Fluid Mech. 117, 91–106 (1982).

    Google Scholar 

  • Sinclair, J. L., Jackson, R.: Gas-particle flow in a vertical pipe with particle-particle interaction. Am. Inst. Chem. Eng. J. 35, 1473–1486 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Usha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usha, R., Senthilkumar, S. & Tulapurkara, E. Stability characteristics of suspension flow through wavy-walled channels. Acta Mechanica 176, 1–26 (2005). https://doi.org/10.1007/s00707-004-0195-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-004-0195-x

Keywords

Navigation