Skip to main content
Log in

A circular inclusion in a finite domain I. The Dirichlet-Eshelby problem

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This is the first paper in a series concerned with the precise characterization of the elastic fields due to inclusions embedded in a finite elastic medium. A novel solution procedure has been developed to systematically solve a type of Fredholm integral equations based on symmetry, self-similarity, and invariant group arguments. In this paper, we consider a two-dimensional (2D) circular inclusion within a finite, circular representative volume element (RVE). The RVE is considered isotropic, linear elastic and is subjected to a displacement (Dirichlet) boundary condition. Starting from the 2D plane strain Navier equation and by using our new solution technique, we obtain the exact disturbance displacement and strain fields due to a prescribed constant eigenstrain field within the inclusion. The solution is characterized by the so-called Dirichlet-Eshelby tensor, which is provided in closed form for both the exterior and interior region of the inclusion. Some immediate applications of the Dirichlet-Eshelby tensor are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. D. Eshelby (1957) ArticleTitleThe determination of the elastic field of an ellipsoidal inclusion, and related problems Proc. Royal Soc. London A 241 376–396

    Google Scholar 

  • J. D. Eshelby (1959) ArticleTitleThe elastic field outside an ellipsoidal inclusion Proc. Royal Soc. London A 252 561–569

    Google Scholar 

  • Eshelby, J. D.: Elastic inclusions and inhomogeneities. In: Progress in solid mechanics (Sneddon, N. I., Hill, R., eds.) 2, pp. 89–104. Amsterdam: North-Holland 1962.

  • Z. Hashin S. Shtrikman (1962) ArticleTitleOn some variational principles in anisotropic and nonhomogeneous elasticity J. Mech. Phys. Solids 10 335–342 Occurrence Handle10.1016/0022-5096(62)90004-2

    Article  Google Scholar 

  • Z. Hashin S. Shtrikman (1962) ArticleTitleA variational approach to the theory of the elastic behavior of polycrystals J. Mech. Phys. Solids 10 343–352 Occurrence Handle10.1016/0022-5096(62)90005-4

    Article  Google Scholar 

  • Hill, R.: New derivations of some elastic extremum principles. In: Progress in Applied Mechanics – The Prager Anniversary Volume, pp. 99–106. New York: Macmillan 1963.

  • J. W. Ju L. Z. Sun (1999) ArticleTitleA novel formulation for the exterior point Eshelby's tensor of an ellipsoidal inclusion J. Appl. Mech. 66 570–574

    Google Scholar 

  • H. O. K. Kirchner L. Ni (1993) ArticleTitleDomain dependence of elastic Green's, Hadamard's and Bergmann's functions J. Phys. Mech. Solids 41 1461–1478 Occurrence Handle10.1016/0022-5096(93)90035-E

    Article  Google Scholar 

  • E. Kröner (1986) Statistical modeling J. Gittus J. Zarka (Eds) Modeling small deformations of polycrystals Elsevier New York 229–291

    Google Scholar 

  • E. Kröner (1990) Modified Green's function in the theory of heterogeneous and/or anisotropic linearly elastic media G. J. Weng M. Taya H. Abe (Eds) Micromechanics and inhomogeneity. The Toshio Mura 65th Anniversary Volume Springer New York 599–622

    Google Scholar 

  • Li, S., Sauer, R., Wang, G.: Inclusion problems in a finite spherical domain: I. Finite Eshelby tensors. Proc. Royal Soc. London A (submitted 2005).

  • P. Mazilu (1972) ArticleTitleOn the theory of linear elasticity in statically homogeneous media Rev. Roum. Math. Pur. Appl. 17 261–273

    Google Scholar 

  • T. Mori K. Tanaka (1973) ArticleTitleAverage stress in matrix and average elastic energy of materials with misfitting inclusions Acta Metall 21 571–574 Occurrence Handle10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  • Mura, T.: Micromechanics of defects in solids, 2nd ed. Boston: Martinus Nijhoff 1987.

  • Nemat-Nasser, S., Hori, M.: Micromechanics: overall properties of heterogeneous materials, 2nd ed. Amsterdam New York Oxford: Elsevier 1999.

  • C. Somigliana (1885) ArticleTitleSopra l'equilibrio di un corpo elastico isotropo Nuovo Ciemento 17 140–148

    Google Scholar 

  • Walpole, L. J.: Elastic behavior of composite materials: theoretical foundations: In: Adv. Appl. Mech. 21, 169–242 (Yih, C.-S., ed.). New York: Academic Press 1981.

  • Wang, G., Li, S., Sauer, R.: Circular inclusion in a finite elastic domain II. The Neumann-Eshelby problem. Acta Mech. (this volume), 91–110.

  • G. J. Weng (1990) ArticleTitleThe theoretical connection between Mori-Tanaka's theory and the Hashin-Shtrikman-Walpole bounds Int. J. Engng. Sci. 28 1111–1120 Occurrence Handle10.1016/0020-7225(90)90111-U

    Article  Google Scholar 

  • Willis, J. R.: Variational and related methods for the overall properties of composites. In: Adv. Appl. Mech. (Yih, C.- S., ed.) 21, pp. 1–78. New York: Academic Press 1981.

  • J. R. Willis (1983) ArticleTitleThe overall elastic response of composite materials ASME J. Appl. Mech. 50 1202–1209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Sauer, R. & Wang, G. A circular inclusion in a finite domain I. The Dirichlet-Eshelby problem. Acta Mechanica 179, 67–90 (2005). https://doi.org/10.1007/s00707-005-0234-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-005-0234-2

Keywords

Navigation