Skip to main content
Log in

A theory of hyperelasticity of multi-phase media with surface/interface energy effect

  • Published:
Acta Mechanica Aims and scope Submit manuscript

An Erratum to this article was published on 15 October 2010

Summary

In addition to the classical governing equations in continuum mechanics, two kinds of governing equations are necessary in the solution of boundary-value problems for the stress fields in multi-phase hyperelastic media with the surface/interface energy effect. The first is the interface constitutive relation, and the second are the discontinuity conditions of the traction across the interface, namely, the Young-Laplace equations. In this paper, the interface consitutive relations are presented in terms of the interface energy in both Lagrangian and Eulerian descriptions within the framework of finite deformation, and the expressions of the interface stress for an isotropic interface are given as a special case. Then, by introducing a fictitious stress-free configuration, a new energy functional for multi-phase hyperelastic media with interface energy effect is proposed. The functional takes into account the interface energy and the interface stress-induced ``residual'' elastic field, which reflects the intrinsic physical properties of the material. All field equations, including the generalized Young-Laplace equation, can be derived from the stationary condition of this functional. The present theory is illustrated by simple examples. The results in this paper provide a theoretical framework for studying the elastostatic problems of multi-phase hyperelastic bodies that involve surface/interface energy effects at finite deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. W. Gibbs (1906) The scientific papers of J. Willard Gibbs, vol. 1 Longmans-Green London

    Google Scholar 

  • R. Shuttleworth (1950) ArticleTitleThe surface tension of solids Proc. Phys. Soc. A63 444–457

    Google Scholar 

  • C. Herring (1953) The use of classical macroscopic concepts in surface energy problems R. Gomer C. S. Smith (Eds) Structure and properties of solid surfaces The University of Chicago Press Chicago 5–81

    Google Scholar 

  • H. Ibach (1997) ArticleTitleThe role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures Surf. Sci. Rep. 29 195–263 Occurrence Handle10.1016/S0167-5729(97)00010-1

    Article  Google Scholar 

  • W. Haiss (2001) ArticleTitleSurface stress of clean and adsorbate-covered solids Rep. Prog. Phys. 64 591–648 Occurrence Handle10.1088/0034-4885/64/5/201

    Article  Google Scholar 

  • P. Müller A. Saúl (2004) ArticleTitleElastic effects on surface physics Surf. Sci. Rep. 54 157–258

    Google Scholar 

  • R. C. Cammarata (1997) ArticleTitleSurface and interface stress effects on interfacial and nanostructured materials Mater. Sci. Engng. A 237 180–184 Occurrence Handle10.1016/S0921-5093(97)00128-7

    Article  Google Scholar 

  • L. G. Zhou H. C. Huang (2004) ArticleTitleAre surfaces elastically softer or stiffer? Appl. Phys. Lett. 84 1940–1942

    Google Scholar 

  • Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410-1–5 (2004).

    Google Scholar 

  • H. L. Duan J. Wang Z. P. Huang B. L. Karihaloo (2005) ArticleTitleSize-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress J. Mech. Phys. Solids 53 1574–1596 Occurrence Handle2146590

    MathSciNet  Google Scholar 

  • R. Dingreville J. Qu M. Cherkaoui (2005) ArticleTitleSurface free energy and its effect on the elastic behaviour of nano-sized particles, wires and films J. Mech. Phys. Solids 53 1827–1854 Occurrence Handle2006a:74004

    MathSciNet  Google Scholar 

  • M. E. Gurtin A. I. Murdoch (1975) ArticleTitleA continuum theory of elastic material surfaces Arch. Rat. Mech. Anal. 57 291–323 Occurrence Handle10.1007/BF00261375 Occurrence Handle51 #7444

    Article  MathSciNet  Google Scholar 

  • D. J. Steigmann R. W. Ogden (1999) ArticleTitleElastic surface-substrate interactions Proc. Roy. Soc. London A455 437–474 Occurrence Handle2000h:74012

    MathSciNet  Google Scholar 

  • B. R. Seth (1964) Generalized strain measure with application to physical problems M. Reiner D. Abir (Eds) Second-order effects in elasticity, plasticity and fluid dynamics Pergamon Press Oxford 162–172

    Google Scholar 

  • R. C. Cammarata R. K. Eby (1991) ArticleTitleEffects and measurement of internal surface stress in materials with ultrafine microstructures J. Mater. Res. 6 888–890

    Google Scholar 

  • Z. P. Huang (2003) Fundamentals of continuum mechanics Higher Education Press Beijing

    Google Scholar 

  • R. W. Ogden (1984) Nonlinear elastic deformations Ellis Horwood Chichester

    Google Scholar 

  • M. M. Carroll (1988) ArticleTitleFinite strain solutions in compressible isotropic elasticity J. Elasticity 20 65–92 Occurrence Handle10.1007/BF00042141 Occurrence Handle0654.73030 Occurrence Handle89f:73033

    Article  MATH  MathSciNet  Google Scholar 

  • M. M. Carroll (1991) ArticleTitleControllable deformations in compressible finite elasticity Stability Appl. Anal. Continuous Media 1 373–384

    Google Scholar 

  • J. G. Murphy (1992) ArticleTitleSome new closed-form solutions describing spherical inflation in compressible finite elasticity IMA J. Appl. Math. 48 305–316 Occurrence Handle0759.73021 Occurrence Handle93a:73047

    MATH  MathSciNet  Google Scholar 

  • J. G. Murphy (1997) ArticleTitleA family of solutions describing spherical inflation in finite compressible elasticity Q. J. Mech. Appl. Math. 50 35–45 Occurrence Handle10.1093/qjmam/50.1.35 Occurrence Handle0885.73008 Occurrence Handle97m:73016

    Article  MATH  MathSciNet  Google Scholar 

  • C. O. Horgan (1992) ArticleTitleVoid nucleation and growth for compressible nonlinearly elastic materials: an example Int. J. Solids Struct. 29 279–291 Occurrence Handle0755.73026 Occurrence Handle92i:73050

    MATH  MathSciNet  Google Scholar 

  • C. O. Horgan (2001) Equilibrium solutions for compressible nonlinearly elastic materials Y. B. Fu R. W. Ogden (Eds) Nonlinear elasticity: theory and applications Cambridge University Press Cambridge 135–159

    Google Scholar 

  • F. John (1960) ArticleTitlePlane strain problems for a perfectly elastic material of harmonic type Comm. Pure Appl. Math. 13 239–296 Occurrence Handle0094.37001 Occurrence Handle22 #8795

    MATH  MathSciNet  Google Scholar 

  • D. M. Haughton (1987) ArticleTitleInflation of thick-walled compressible elastic spherical shells IMA J. Appl. Math. 39 259–272 Occurrence Handle0649.73021 Occurrence Handle90c:73096

    MATH  MathSciNet  Google Scholar 

  • Z. Hashin (1985) ArticleTitleLarge isotropic elastic deformation of composites and porous media Int. J. Solids Struct. 21 711–720 Occurrence Handle0575.73051

    MATH  Google Scholar 

  • J. Aboudi S. M. Arnold (2000) ArticleTitleMicromechanical modeling of the finite deformation of thermoelastic multiphase composites Math. Mech. Solids 5 75–99

    Google Scholar 

  • D. T. Chung C. O. Horgan R. Abeyaratne (1986) ArticleTitleThe finite deformation of internally pressurized hollow cylinders and spheres for a class of compressible elastic materials Int. J. Solids Struct. 22 1557–1570

    Google Scholar 

  • J. M. Hill (1993) ArticleTitleCylindrical and spherical inflation in compressible finite elasticity IMA J. Appl. Math. 50 195–201 Occurrence Handle0773.73038 Occurrence Handle94g:73023

    MATH  MathSciNet  Google Scholar 

  • J. G. Murphy S. Biwa (1997) ArticleTitleNon-monotonic cavity growth in finite compressible elasticity Int. J. Solids Struct. 34 3859–3872 Occurrence Handle98h:73029

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Huang.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00707-010-0384-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z.P., Wang, J. A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mechanica 182, 195–210 (2006). https://doi.org/10.1007/s00707-005-0286-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-005-0286-3

Keywords

Navigation