Skip to main content

Advertisement

Log in

Universal relations for nonlinear electroelastic solids

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Electro-sensitive elastomers are materials that can support large elastic deformations under the influence of an electric field. There has been growing interest recently in their applications as so-called ``smart materials''. This paper is devoted to the derivation of universal relations in the context of the nonlinear theory of electroelasticity that underpins such applications. Universal relations are equations relating the components of the stress, the electric variables and the deformation that are independent of the constitutive law for a family of materials. For the general constitutive equations of an isotropic electroelastic material derived from a free energy function and for some special cases of these equations, we obtain universal relations, the word ``universal'' being relative to the considered class or subclass of constitutive laws. These universal relations are then applied to some controllable states (homogeneous and non-homogeneous) in order to highlight some examples that may be useful from the point of view of experimental characterization of the material properties. Additionally, we examine the (non-controllable) problem of helical shear of a circular cylindrical tube in the presence of a radial electric field, and we find that a nonlinear universal relation that has been obtained previously for an elastic material also holds when the electric field is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Farshad M. Le Roux (2004) ArticleTitleA new active noise abatement barrier system Polymer Testing 23 855–860

    Google Scholar 

  • Costen, R. C., Su, J., Harrison, J. S.: Model for bending actuators that use electrostrictive graft elastomers. In: Proc. SPIE Vol. 4329, Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices (Bar-Cohen, J., ed.), pp. 436–444. SPIE Press 2001.

  • M. R. Jolly J. D. Carlson B. C. Muñoz (1996) ArticleTitleA model of the behavior of magnetorheological materials Smart Mater. Struct. 5 607–614 Occurrence Handle10.1088/0964-1726/5/5/009

    Article  Google Scholar 

  • A. Dorfmann R. W. Ogden (2005) ArticleTitleNonlinear electroelasticity Acta Mech 174 167–183 Occurrence Handle10.1007/s00707-004-0202-2

    Article  Google Scholar 

  • R. A. Toupin (1956) ArticleTitleThe elastic dielectric J. Rat. Mech. Anal. 5 850–915 Occurrence Handle18,349b

    MathSciNet  Google Scholar 

  • C. A. Truesdell (1952) ArticleTitleThe mechanical foundations of elasticity and fluid dynamics J. Rat. Mech. Anal. 1 125–300 Occurrence Handle0046.17306 Occurrence Handle13,794d

    MATH  MathSciNet  Google Scholar 

  • R. W. Ogden (1997) Dover Nonlinear elastic deformations New York

    Google Scholar 

  • N. F. Jordan A. C. Eringen (1963) ArticleTitleOn the static nonlinear theory of electromagnetic thermoelastic solids I Int. J. Engng. Sci. 2 59–95 Occurrence Handle29 #820

    MathSciNet  Google Scholar 

  • N. F. Jordan A. C. Eringen (1963) ArticleTitleOn the static nonlinear theory of electromagnetic thermoelastic solids II Int. J. Engng. Sci. 2 98–114

    Google Scholar 

  • Rivlin, R. S.: Some applications of elasticity theory to rubber engineering. In: Proc. Rubber Technology Conf., London (Dawson, T. R., ed.), pp. 1–8. Cambridge: Heffer 1948 (appeared also in: Collected papers of Ronald S. Rivlin, vol. 1 (Barenblatt, G. I., Joseph, D. D., eds.), pp. 9–16. Berlin: Springer 1996)

  • M. Hayes R. J. Knops (1966) ArticleTitleOn universal relations in elasticity theory ZAMP 17 636–639

    Google Scholar 

  • M. F. Beatty (1987) ArticleTitleTopics in finite elasticity: Hyperelasticity of rubber, elastomers and biological tissues, with examples Appl. Mech. Rev. 40 1699–1734

    Google Scholar 

  • E. Pucci G. Saccomandi (1997) ArticleTitleOn universal relation in continuum mechanics Cont. Mech. Thermodyn. 9 61–72 Occurrence Handle10.1007/s001610050055 Occurrence Handle98m:73001

    Article  MathSciNet  Google Scholar 

  • A. Dorfmann R. W. Ogden G. Saccomandi (2004) ArticleTitleOn universal relations for non-linear magnetoelastic solids Int. J. Non-linear Mech. 39 1699–1708 Occurrence Handle2005c:74026

    MathSciNet  Google Scholar 

  • M. Singh A. C. Pipkin (1966) ArticleTitleControllable states of elastic dielectrics Arch. Rat. Mech. Anal. 21 169–210 Occurrence Handle10.1007/BF00253488 Occurrence Handle32 #8571

    Article  MathSciNet  Google Scholar 

  • R. W. Ogden P. Chadwick E. W. Haddon (1973) ArticleTitleCombined axial and torsional shear of a tube of incompressible isotropic elastic material Q. J. Mech. Appl. Math. 26 23–41

    Google Scholar 

  • A. C. Eringen G. A. Maugin (1990) Electrodynamics of continua I: Foundations and solid media Springer New York

    Google Scholar 

  • C. A. Truesdell R. A. Toupin (1960) The classical field theories S. Flügge (Eds) Handbuch der Physik, vol. III/1 Springer Berlin

    Google Scholar 

  • K. Hutter (1977) ArticleTitleA thermodynamic theory of fluids and solids in the electromagnetic fields Arch. Rat. Mech. Anal. 64 269–289 Occurrence Handle0366.73001 Occurrence Handle57 #8511

    MATH  MathSciNet  Google Scholar 

  • A. Dorfmann R. W. Ogden (2003) ArticleTitleMagnetoelastic modelling of elastomers Eur. J. Mech. A/Solids 22 497–507 Occurrence Handle10.1016/S0997-7538(03)00067-6 Occurrence Handle2004g:74022

    Article  MathSciNet  Google Scholar 

  • A. Kovetz (2000) Electromagnetic theory Oxford University Press Oxford

    Google Scholar 

  • Y. H. Pao (1978) Electromagnetic forces in deformable continua S. Nemat-Nasser (Eds) Mechanics Today, vol. 4 Pergamon Press Oxford 209–306

    Google Scholar 

  • J. L. Ericksen (1954) ArticleTitleDeformations possible in every isotropic, incompressible, perfectly elastic body ZAMP 5 466–489 Occurrence Handle0059.17509 Occurrence Handle16,643e

    MATH  MathSciNet  Google Scholar 

  • K. R. Rajagopal A. Wineman (1999) ArticleTitleA constitutive equation for nonlinear electro-active solids Acta Mech. 135 219–228 Occurrence Handle10.1007/BF01305753 Occurrence Handle2000a:74003

    Article  MathSciNet  Google Scholar 

  • E. Pucci G. Saccomandi (1993) ArticleTitleOn the controllable states of elastic dielectrics and magnetoelastic solids Int. J. Engng. Sci. 31 251–256 Occurrence Handle10.1016/0020-7225(93)90038-V Occurrence Handle93g:73103

    Article  MathSciNet  Google Scholar 

  • A. Dorfmann R. W. Ogden (2004) ArticleTitleNonlinear magnetoelastic deformations Q. J. Mech. Appl. Math. 57 599–622 Occurrence Handle10.1093/qjmam/57.4.599 Occurrence Handle2005f:74031

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Ogden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustamante, R., Ogden, R.W. Universal relations for nonlinear electroelastic solids. Acta Mechanica 182, 125–140 (2006). https://doi.org/10.1007/s00707-005-0290-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-005-0290-7

Keywords

Navigation