Skip to main content
Log in

Unconditional nonlinear stability for convection in a porous medium with vertical throughflow

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Linear and nonlinear stability analyses of vertical throughflow in a fluid saturated porous layer, which is modelled using a cubic Forchheimer model, are studied. To ensure unconditional nonlinear results are obtainable, and to avoid the loss of key terms, a weighted functional is used in the energy analysis. The linear instability and nonlinear stability thresholds show considerable agreement when the vertical throughflow is small, although there is substantial deterioration of this agreement as the vertical throughflow increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Zhao C., Hobbs B. E. and Muhlhaus A. B. (1999). Theoretical and numerical analyses of convective instability on porous media with upward throughflow. Int. J. Numer. Anal. Meth. Geomech. 23: 629–646

    Article  MATH  Google Scholar 

  • Krishnamurti R. (1975). On cellular cloud patterns. Part 1: Mathematical model. J. Atmos. Sci. 32: 1351–1363

    Google Scholar 

  • Somerville R. C. J. and Gal-Chen T. (1979). Numerical simulation of convection with mean vertical motion. J. Atmos. Sci. 36: 805–815

    Article  Google Scholar 

  • Nield D. A. (1998). Convection in a porous medium with an inclined temperature gradient and vertical throughflow. Int. J. Heat Mass Transf. 41: 241–243

    Article  MATH  Google Scholar 

  • Nield D. A. and Bejan A. (1999). Convection in porous media. Springer, New York

    MATH  Google Scholar 

  • Hill, A. A., Rionero, S., Straughan, B.: Global stability for penetrative convection with throughflow in a porous material (in preparation).

  • Giorgi T. (1997). Derivation of the Forchheimer law via matched asymptotic expansions. Trans. Porous Media 29: 191–206

    Article  Google Scholar 

  • Whitaker S. (1996). The Forchheimer equation: a theoretical development. Transp. Porous Media 25: 27–62

    Article  Google Scholar 

  • Gilver R. C. and Altobelli S. A. (1994). A determination of effective viscosity for the Brinkman–Forchheimer flow model. J. Fluid. Mech. 258: 355–370

    Article  Google Scholar 

  • Néel M. C. (1998). Convection forcée en milieu poreux: écarts à la loi de Darcy C. R. Acad. Sci. Paris, série IIb 326: 615–620

    MATH  Google Scholar 

  • Flavin J. N. and Rionero S. (2002). Note on a versatile Liapunov functional: applicability to an elliptic equation. Math. Meth. Appl. Sci. 25: 1299–1305

    Article  MATH  MathSciNet  Google Scholar 

  • Flavin J. N. and Rionero S. (2003). Stability properties for the nonlinear diffusion in porous media and other media. J. Math. Anal. Appl. 28: 221–232

    MathSciNet  Google Scholar 

  • Lombardo S., Mulone G. and Rionero S. (2001). Global nonlinear exponential stability of the conduction–diffusion solution for Schmidt numbers greater than Prandtl numbers. J. Math. Anal. Appl. 262: 191–207

    Article  MATH  MathSciNet  Google Scholar 

  • Payne L. E. and Straughan B. (2000). Unconditional nonlinear stability in temperature-dependent viscosity flow in a porous medium. Stud. Appl. Math. 105: 59–81

    Article  MATH  MathSciNet  Google Scholar 

  • Carr M. (2003). Unconditional nonlinear stability for temperature dependent density flow in a porous medium. Math. Models Meth. App. Sci. 13: 207–220

    Article  MATH  MathSciNet  Google Scholar 

  • Straughan B. and Walker D. W. (1996). Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems. J. Comput. Phys. 127: 128–141

    Article  MATH  MathSciNet  Google Scholar 

  • Dongarra J. J., Straughan B. and Walker D. W. (1996). Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22: 399–434

    Article  MATH  MathSciNet  Google Scholar 

  • Christopherson D. G. (1940). Note on the vibration of membranes. Quart. J. Math. 11: 63–65

    Article  MathSciNet  Google Scholar 

  • Molar C. B. and Stewart G. W. (1973). An algorithm for generalized matrix eigenproblems. SIAM J. Numer. Anal. 10: 241–256

    Article  MathSciNet  Google Scholar 

  • Straughan B. (2004). The energy method, stability and nonlinear convection. Springer, New York

    MATH  Google Scholar 

  • Qiao Z. and Kaloni P. (1998). Nonlinear convection in a porous medium with inclined temperature gradient and vertical throughflow. Int. J. Heat Mass Transf. 41: 2549–2552

    Article  MATH  Google Scholar 

  • Rionero S. and Galdi G. (1985). Weighted energy methods in fluid dynamics and elasticity. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, A.A. Unconditional nonlinear stability for convection in a porous medium with vertical throughflow. Acta Mechanica 193, 197–206 (2007). https://doi.org/10.1007/s00707-007-0473-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0473-5

Keywords

Navigation