Skip to main content
Log in

Rayleigh waves in magneto-electro-elastic half planes

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper investigates Rayleigh waves in magneto-electro-elastic half planes. The magneto-electro-elastic materials are assumed to possess hexagonal (6 mm) symmetry. Sixteen sets of boundary conditions are considered and the corresponding frequency equations are derived. It is found that for any of the 16 sets of boundary conditions, the Rayleigh waves, if exist, are always non-dispersive. Numerical results show that both the material coefficients and boundary conditions can significantly influence the Rayleigh wave properties in magneto-electro-elastic half planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Suchtelen J.: Product properties: a new application of composite materials. Philips Res. Rep. 27, 28–37 (1972)

    Google Scholar 

  2. Wislon L.O., Morrison J.A.: Wave propagation in piezoelectric rods of hexagonal crystal symmetry. Q. J. Mech. Appl. Math. 30, 387–395 (1977)

    Article  Google Scholar 

  3. Guzellsu N., Saha S.: Electro-mechanical wave propagation in long bones. J. Biomech. 14, 19–33 (1981)

    Article  Google Scholar 

  4. Paul H.S., Venkatesan M.: Wave propagation in a piezoelectric bone with a cylindrical cavity of arbitrary shape. Int. J. Eng. Sci. 29, 1601–1607 (1991)

    Article  Google Scholar 

  5. Honein B., Herrmann G.: Wave propagation in nonhomogeneous piezoelectric materials. Dyn. Syst. Cont. Division 38, 105–112 (1992)

    Google Scholar 

  6. Chai J.F.: Propagation of surface waves in a prestressed piezoelectric material. J. Acoust. Soc. Am. 100, 2112–2122 (1996)

    Article  Google Scholar 

  7. Jin F., Wang Z., Wang T.: The Bleustein-Gulyaev (B-G) wave in a piezoelectric layered half-space. Int. J. Eng. Sci. 39, 1271–1285 (2001)

    Article  Google Scholar 

  8. Liu H., Wang Z.K., Wang T.J.: Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. Int. J. Solids Struct. 38, 37–51 (2001)

    Article  MATH  Google Scholar 

  9. Wang Q.: Wave propagation in a piezoelectric coupled solid medium. J. Appl. Mech. 69, 819–824 (2002)

    Article  MATH  Google Scholar 

  10. Wang Q., Varadan V.K.: Longitudinal wave propagation in piezoelectric coupled rods. Smart Mater. Struct. 11, 48–54 (2002)

    Article  Google Scholar 

  11. Ashida F., Tauchert T.R.: Thermally-induced wave propagation in a piezoelectric plate. Acta Mech. 161, 1–16 (2003)

    Article  MATH  Google Scholar 

  12. Qian Z., Jin F., Wang Z., Kishimoto K.: Love wave propagation in a piezoelectric layered structure with initial stresses. Acta Mech. 171, 41–57 (2004)

    Article  MATH  Google Scholar 

  13. Li X.F., Yang J.S., Jiang Q.: Spatial dispersion of short surface acoustic waves in piezoelectric ceramics. Acta Mech. 180, 11–20 (2005)

    Article  MATH  Google Scholar 

  14. Wang J., Lin J.B.: Two-dimensional theory for surface acoustic wave propagation in finite piezoelectric solids. J. Intell. Mater. Syst. Struct. 16, 623–629 (2005)

    Article  MathSciNet  Google Scholar 

  15. Wei J.P., Su X.Y.: Wave propagation in a piezoelectric rod of 6 mm symmetry. Int. J. Solids Struct. 42, 3644–3654 (2005)

    Article  MATH  Google Scholar 

  16. Darloyan Z.N., Posian G.T.: Surface electro-elastic Love waves in a layered structure with a piezoelectric substrate and a dielectric layer. Int. J. Solids Struct. 44, 5829–5847 (2007)

    Article  Google Scholar 

  17. Liu H., Zhu S.N., Zhu Y.Y., Chen Y.F., Ming N.B., Zhang X.: Piezoelectric–piezomagnetic multilayer with simultaneously negative permeability and permittivity. Appl. Phys. Lett. 86, 102904 (2005)

    Article  Google Scholar 

  18. Feng W.J., Hao R.J., Liu J.X., Duan S.M.: Scattering of SH waves by arc-shaped interface cracks between a cylindrical magneto-electro-elastic inclusion and matrix: near fields. Arch. Appl. Mech. 74, 649–663 (2005)

    Article  MATH  Google Scholar 

  19. Feng W.J., Su R.K.L., Liu Y.Q.: Scattering of SH waves by an arc-shaped interface crack between a cylindrical magneto-electro-elastic inclusion and matrix with the symmetry of 6 mm. Acta Mech. 183, 81–102 (2006)

    Article  MATH  Google Scholar 

  20. Soh A.K., Liu J.X.: Interfacial shear horizontal waves in a piezoelectric–piezomagnetic bi-material. Philos. Mag. Lett. 86, 31–35 (2006)

    Article  Google Scholar 

  21. Wang B.L., Mai Y.W., Niraula O.P.: A horizontal shear surface wave in magnetoelectroelastic materials. Philos. Mag. Lett. 87, 53–58 (2007)

    Article  Google Scholar 

  22. Chen J.Y., Pan E., Chen H.L.: Wave propagation in magneto-electro-elastic multilayered plates. Int. J. Solids Struct. 44, 1073–1085 (2007)

    Article  MATH  Google Scholar 

  23. Chen P., Shen Y.P.: Propagation of axial shear magneto-electro-elastic waves in piezoelectric–piezomagnetic composites with randomly distributed cylindrical inhomogeneities. Int. J. Solids Struct. 44, 1511–1532 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Melkumyan A.: Twelve shear surface waves guided by clamped/free boundaries in magneto-electro-elastic materials. Int. J. Solids Struct. 44, 3594–3599 (2007)

    Article  MATH  Google Scholar 

  25. Du J., Jin X., Wang J.: Love wave propagation in layered magneto-electro-elastic structures with initial stress. Acta Mech. 192, 169–189 (2007)

    Article  MATH  Google Scholar 

  26. Pan E.: Mindlin’s problem for an anisotropic piezoelectric half-space with general boundary conditions. Proc. R. Soc. Lond. A 458, 181–208 (2002)

    Article  MATH  Google Scholar 

  27. Wang B.L., Mai Y.W.: Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. Int. J. Solids Struct. 44, 387–398 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, W.J., Pan, E., Wang, X. et al. Rayleigh waves in magneto-electro-elastic half planes. Acta Mech 202, 127–134 (2009). https://doi.org/10.1007/s00707-008-0024-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0024-8

Keywords

Navigation