Skip to main content
Log in

More clarity on the concept of material frame-indifference in classical continuum mechanics

  • Published:
Acta Mechanica Aims and scope Submit manuscript

A Publishers Erratum to this article was published on 16 September 2008

Abstract

There was and still is a considerable amount of confusion in the community of classical continuum mechanics on the concept of material frame-indifference. An extensive review is presented which will point out and try to resolve various misconceptions that still accompany the literature of material frame-indifference. With the tools of differential geometry a precise terminology is developed ending in a consequent mathematical framework, in which not only the concept of material frame-indifference can be formulated naturally, but showing advantages that go beyond all conventional considerations on invariance used so far in classical continuum mechanics. As an exemplification the Navier-Stokes equations and the corresponding Reynolds averaged equations are written in a general covariant form within Newtonian mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haupt P.: Continuum mechanics and theory of materials, 2nd edn. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  2. Hutter K., Jöhnk K.: Continuum methods of physical modeling. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  3. Truesdell C., Toupin R.: The classical field theories. In: Flügge, S.(eds) Prinzipien der klassischen Mechanik und Feldtheorie, vol. 2 of Handbuch der Physik, pp. 226–793. Springer, Heidelberg (1960)

    Google Scholar 

  4. Truesdell C., Noll W.: The non-linear field theories of mechanics, 3rd edn. Springer, Heidelberg (1965)

    Google Scholar 

  5. Murdoch A.I.: On criticism of the nature of objectivity in classical continuum mechanics. Continuum. Mech. Thermodyn. 17, 135 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Liu I.-S.: Further remarks on Euclidean objectivity and the principle of material frame-indifference. Continuum. Mech. Thermodyn. 17, 125 (2005)

    Article  MATH  Google Scholar 

  7. Hooke R.: Lectures de potentia restitutiva, or of spring explaining the power of springing bodies, 1678 London. In: Gunther, R.T.(eds) Early science in Oxford, vol VIII, pp. 331–356. Oxford University Press, New York (1931)

    Google Scholar 

  8. Poisson S.-D.: Mémoire sur les équations générales de l’équilibre et du mouvement des corps élastiques et des fluides. J. École. Poly. 13, 1 (1829)

    Google Scholar 

  9. Cauchy A.-L.: Sur l’équilibre et le mouvement intérieur des corps considérés comme des masses continues. Ex. de Math. 4, 293 (1829)

    Google Scholar 

  10. Einstein A.: Zur Elektrodynamik bewegter Körper. Ann. Physik. 17, 891 (1905)

    Article  Google Scholar 

  11. Zaremba, S.: Le principe des mouvements relatifs et les équations de la mécanique physique. Bull. Int. Acad. Sci. Cracovie. (1903) 614

  12. Jaumann G.: Elektromagnetische Vorgänge in bewegten Medien. Sitzungsbericht Akad. Wiss. Wien (IIa) 15, 337 (1906)

    Google Scholar 

  13. Noll W.: Euclidean geometry and Minkowskian chronometry. Am. Math. Mon. 71, 129 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  14. Noll W.: Space–time structures in classical mechanics. In: Bunge, M.(eds) Delaware seminar in the foundations of physics, pp. 28–34. Springer, Heidelberg (1967)

    Google Scholar 

  15. Noll W.: Lectures on the foundations of continuum mechanics and thermodynamics. Arch. Rat. Mech. Anal. 52, 62 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  16. Müller I.: On the frame dependence of stress and heat flux. Arch. Rational Mech. Anal. 45, 241 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  17. Edelen D.G., McLennan J.A.: Material indifference: a principle or a convenience. Int. J. Eng. Sci. 11, 813 (1973)

    Article  MATH  Google Scholar 

  18. Wang C.C.: On the concept of frame-indifference in continuum mechanics and in the kinetic theory of gases. Arch. Rat. Mech. Anal. 58, 381 (1975)

    Article  MATH  Google Scholar 

  19. Müller I.: On the frame dependence of electric current and heat flux in a metal. Acta. Mech. 24, 117 (1976)

    Article  Google Scholar 

  20. Söderholm L.H.: The principle of material frame-indifference and material equations of gases. Int. J. Eng. Sci. 14, 523 (1976)

    Article  Google Scholar 

  21. Truesdell C.: Correction of two errors in the kinetic theory of gases which have been used to cast unfounded doubt upon the principle of frame indifference. Meccanica 11, 196 (1976)

    Article  MATH  Google Scholar 

  22. Hoover W.G., Moran B., More R.M., Ladd A.J.: Heat conduction in a rotating disk via nonequilibrium molecular dynamics. Phys. Rev. A. 24, 2109 (1981)

    Article  Google Scholar 

  23. Heckl M., Müller I.: Frame dependence, entropy, entropy flux, and wave speeds in mixtures of gases. Acta. Mech. 50, 71 (1983)

    Article  MATH  Google Scholar 

  24. Murdoch A.I.: On material frame-indifference, intrinsic spin, and certain constitutive relations motivated by the kinetic theory of gases. Arch. Rat. Mech. Anal. 83, 185 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ryskin G.: Misconception which led to the “material frame-indifference” controversy. Phys. Rev. A. 32, 1239 (1985)

    Article  Google Scholar 

  26. Matolcsi T.: On material frame-indifference. Arch. Rat. Mech. Anal. 91, 99 (1986)

    MathSciNet  Google Scholar 

  27. Kempers L.J.: The principle of material frame indifference and the covariance principle. Il Nuovo. Cimento B. 103, 227 (1989)

    Article  Google Scholar 

  28. Einstein A.: Die Grundlage der allgemeinen Relativitätstheorie. Ann. Physik. 49, 769 (1916)

    Article  Google Scholar 

  29. Sharipov F.M., Kremer G.M.: On the frame dependence of constitutive equations. I. Heat transfer through a rarefied gas between two rotating cylinders. Cont. Mech. Thermodyn. 7, 57 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  30. Matolcsi T., Gruber T.: Spacetime without reference frames: an application to the kinetic theory. Int. J. Theor. Phys. 35, 1523 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Muschik W.: Objectivity and frame indifference, revisited. Arch. Mech. 50, 541 (1998)

    MATH  MathSciNet  Google Scholar 

  32. Svendsen B., Bertram A.: On frame-indifference and form-invariance in constitutive theory. Acta Mech. 132, 195 (1999)

    Article  MathSciNet  Google Scholar 

  33. Bertram A., Svendsen B.: On material objectivity and reduced constitutive equations. Arch. Mech. 53, 653 (2001)

    MATH  MathSciNet  Google Scholar 

  34. Rivlin R.S.: Material symmetry revisited. GAMM-Mitteilungen 25(1/2), 109 (2002)

    MATH  MathSciNet  Google Scholar 

  35. Bertram A., Svendsen B.: Reply to Rivlin’s material symmetry revisited or much ado about nothing. GAMM-Mitteilungen 27(1/2), 88 (2004)

    MATH  MathSciNet  Google Scholar 

  36. Murdoch A.I.: Objectivity in classical continuum physics: a rationale for discarding the ‘principle of invariance under superposed rigid body motions’ in favour of purely objective considerations. Continuum. Mech. Thermodyn. 15, 309 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Liu I.-S.: On Euclidean objectivity and the principle of material frame-indifference. Continuum. Mech. Thermodyn. 16, 177 (2004)

    Article  MATH  Google Scholar 

  38. Noll W.: A frame-free formulation of elasticity. J. Elast. 83, 291 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Lumley J.L.: Toward a turbulent constitutive relation. J. Fluid. Mech. 41, 413 (1970)

    Article  Google Scholar 

  40. Lumley J.L.: Turbulence modeling. J. Appl. Mech. 50, 1097 (1983)

    Google Scholar 

  41. Speziale C.G.: Some interesting properties of two-dimensional turbulence. Phys. Fluids. 24, 1425 (1981)

    Article  MATH  Google Scholar 

  42. Speziale C.G.: A review of material frame-indifference in mechanics. Appl. Mech. Rev. 51, 489 (1998)

    Article  Google Scholar 

  43. Sadiki A., Hutter K.: On the frame dependence and form invariance of the transport equations for the Reynolds stress tensor and the turbulent heat flux vector: its consequences on closure models in turbulence modelling. Cont. Mech. Thermodyn. 8, 341 (1996)

    Article  MATH  Google Scholar 

  44. Schutz B.: Geometrical methods of mathematical physics. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  45. Schrödinger E.: Space–time structure, 4th edn. Cambridge University Press, London (1985)

    Google Scholar 

  46. Sexl R.U., Urbantke H.K.: Relativity, groups, particles: special relativity and relativistic symmetry in field and particle physics, 2nd edn. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  47. Ovsiannikov L.V.: Group analysis of differential equations, 2nd edn. Academic Press, New York (1982)

    MATH  Google Scholar 

  48. Olver P.J.: Applications of Lie groups to differential equations, 2nd edn. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  49. Ibragimov N.H.: Lie group analysis of differential equations, vol. I–III of CRC Handbook. CRC Press, Boca Raton (1994)

    Google Scholar 

  50. Bluman G.W., Kumei S.: Symmetries and differential equations, 2nd edn. Springer, Heidelberg (1996)

    Google Scholar 

  51. Cantwell B.J.: Introduction to symmetry analysis. Cambridge University Press, London (2002)

    MATH  Google Scholar 

  52. Hess G.B., Fairbank W.M.: Measurements of angular momentum in superfluid helium. Phys. Rev. Lett. 19, 216 (1967)

    Article  Google Scholar 

  53. Landau L.: Theory of the superfluidity of Helium II. Phys. Rev. 60, 356 (1941)

    Article  MATH  Google Scholar 

  54. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. Freeman, San Fransisco (1973)

    Google Scholar 

  55. Stephani H.: General relativity: an introduction to the theory of the gravitational field, 2nd edn. Cambridge University Press, London (1990)

    MATH  Google Scholar 

  56. Fließbach T.: Allgemeine Relativitätstheorie, 5th edn. Spektrum, New York (2006)

    Google Scholar 

  57. Friedman M.: Foundations of space–time theories: relativistic physics and philosophy of science. Princeton University Press, New Jersey (1983)

    Google Scholar 

  58. Barbour J.B., Pfister H.: Mach’s principle: from Newton’s bucket to quantum gravity. Birkhäuser, Basel (1995)

    MATH  Google Scholar 

  59. Barbour J.B.: The discovery of dynamics: a study from a Machian point of view of the discovery and the structure of dynamical theories. Oxford University Press, New York (2001)

    Google Scholar 

  60. Penrose, R.: The road to reality: a complete guide to the laws of the universe. Alfred A. Knopf Publishing, (2005)

  61. Mach, E.: Die Mechanik in ihrer Entwicklung, Wissenschaftiche Buchgesellschaft Darmstadt, Reprografischer Nachdruck 1991, 9th edn (1883)

  62. Barbour J.B.: Absolute or relative motion: the deep structure of general relativity. Oxford University Press, New York (2004)

    Google Scholar 

  63. Kretschmann E.: Über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine ursprüngliche Relativitätstheorie. Ann. Physik 53, 575 (1917)

    Google Scholar 

  64. Einstein A.: Dialog über Einwände gegen die Relativitätstheorie. Naturwissenschaften 6, 697 (1918a)

    Article  Google Scholar 

  65. Einstein A.: Prinzipielles zur allgemeinen Relativitätstheorie. Ann. Physik. 55, 241 (1918b)

    Article  Google Scholar 

  66. Norton J.D.: General covariance and the foundations of general relativity: eight decades of dispute. Rep. Prog. Phys. 56, 791 (1993)

    Article  MathSciNet  Google Scholar 

  67. Norton J.D.: Did Einstein stumble? The debate over general covariance. Erkenntnis, Kluwer 42, 223 (1995)

    Article  MathSciNet  Google Scholar 

  68. Dieks D.: Another look at general covariance and the equivalence of reference frames. Stud. Hist. Philos. Modern. Phys. 37, 174 (2006)

    Article  MathSciNet  Google Scholar 

  69. Matolcsi T., Ván P.: Absolute time derivatives. J. Math. Phys. 48, 053507 (2007)

    Article  MathSciNet  Google Scholar 

  70. Cartan E.: Sur les variétés à connexion affine et la théorie de la relativité généralisée. Annales scientifiques de l’École Normale Supérieure 40, 325 (1923)

    MathSciNet  Google Scholar 

  71. Friedrichs K.: Eine invariante Formulierung des Newtonschen Gravitationsgesetzes und des Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz. Math. Ann. 98, 566 (1928)

    Article  MathSciNet  Google Scholar 

  72. Havas P.: Four-dimensional formulations of Newtonian mechanics and their relation to the special and the general theory of relativity. Rev. Mod. Phys. 36, 938 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  73. Trautman A. (1966) Comparison of Newtonian and relativistic theories of space–time. In: Hoffmann B. (eds). Perspectives in geometry and relativity. Indiana University Press, Bloomington

  74. Ehlers, J.: The Newtonian limit of general relativity. In: Ferrarese, G. (ed.) Classical mechanics and relativity: relationship and consistency, Bibliopolis (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Frewer.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00707-008-0087-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frewer, M. More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech 202, 213–246 (2009). https://doi.org/10.1007/s00707-008-0028-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0028-4

Keywords

Navigation