Skip to main content
Log in

Responses of viscoelastic polymer composites with temperature and time dependent constituents

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study formulates a concurrent micromechanical model for predicting effective responses of fiber reinforced polymer (FRP) composites, whose constituents exhibit thermo-viscoelastic behaviors. The studied FRP composite consists of orthotropic unidirectional fiber and isotropic matrix. The viscoelastic material properties for the fiber and matrix constituents are allowed to change with the temperature field. The composite microstructures are idealized with periodically distributed square fibers in a matrix medium. A unit-cell model, consisting of four fiber and matrix subcells, is generated to obtain effective nonlinear thermo-viscoelastic responses of the composites. A time-integration algorithm is formulated to link two different thermo-viscoelastic constitutive material models at the lowest level (homogeneous fiber and matrix constituents) to the effective material responses at the macro level, and to transfer external mechanical and thermal stimuli to the constituents. This forms a concurrent micromechanical model, which is needed as the material properties of the constituents depend on the temperature field. Consistent tangent stiffness matrices are formulated at the fiber and matrix constituents and also at the effective composite level to improve prediction accuracy. The thermo-viscoelastic responses obtained from the concurrent micromodel are verified with available experimental data. Detailed finite element (FE) models of the FRP microstructures are also generated using 3D continuum elements for several fiber volume fractions. Thermo-viscoelastic responses of the concurrent micromodel are also compared to the ones of the detailed FRP microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboudi J.: Mech. of Composite Materials: a Unified Micromechanical Approach. Elsevier, Amsterdam (1991)

    Google Scholar 

  2. Alwis K.G.N., Burgoyne C.J.: Time–temperature superposition to determine the stress-rupture of aramid fibers. Appl. Compos. Mater. 13, 249–264 (2006)

    Article  Google Scholar 

  3. Antonakakis J.N., Bhargava P., Chuang K.C., Zehnder A.T.: Linear viscoelastic properties of HFPE-II-52 polyimide. J. Appl. Pol. Sci. 100, 3255–3263 (2006)

    Article  Google Scholar 

  4. Benedikt B., Rupnowski P., Kumosa M.: Viscoelastic stress distribution and elastic properties in unidirectional composites with large volume fractions of fibers. Acta Mater. 51, 3483–3493 (2003)

    Article  Google Scholar 

  5. Brinson L.C., Knauss W.G.: Thermo-rheologically complex behavior of multiphase viscoelastic materials. J. Mech. Phys. Solids 39(7), 859–880 (1991)

    Article  Google Scholar 

  6. Caruthers J.M., Adolf D.B., Chambers R.S., Shrikhande P.: A thermodynamically consistent, nonlinear viscoelastic approach for modeling glassy polymers. Polymer 45, 4577–4597 (2004)

    Article  Google Scholar 

  7. Christensen R.M.: Mechanics of Composite Materials. Dover Publications, New York (2005)

    Google Scholar 

  8. Haddad Y.M., Tanari S.: On the micromechanical characterization of the creep response of a class of composite systems. J. Press. Vessel Technol. Trans. ASME, 111(2), 177–182 (1989)

    Google Scholar 

  9. Haftchenari H., Al-Salehi F.A.R., Al-Hasani S.T.S., Hinton M.J.: Effect of the temperatures on the tensile strength and failure modes of angle ply aramid fiber (KRP) tube under hoop loading. Appl. Compos. Mater. 9, 99–115 (2002)

    Article  Google Scholar 

  10. Haj-Ali, R.M., Muliana, A.H.: Numerical finite element formulation of the schapery nonlinear viscoelastic material model. Int. J. Numer. Method Eng. 59 (2004)

  11. Haj-Ali R.M., Muliana A.H.: A multi-scale constitutive framework for the nonlinear analysis of laminated composite materials and structures. Int. J. Solids Struct. 41, 3461–3490 (2004)

    Article  MATH  Google Scholar 

  12. Hanson, M.P.: Feasibility of Kevlar 49/PMR-15 polyimide for high temperature applications. In: 12th National SAMPE Technical Conference, pp. 1–15. 7–9 October (1980)

  13. Harris, C.E., Gates, T.S. (eds.): High Temperature and Environmental Effects on Polymeric Composites. ASTM, Philadelphia, ASTM STP Paper No. 1174 (1993)

  14. Harper B.D., Weitsman Y.: Characterization method for a class of thermorheologically complex materials. J. Rheol. 29, 49–66 (1985)

    Article  Google Scholar 

  15. Hashin Z., Humprey E.A., Goering J.: Analysis of thermoviscoelastic behavior of unidirectional fiber composites. Composites Sci. Technol. 29, 103–131 (1987)

    Article  Google Scholar 

  16. Knauss W.G., Emri I.: Volume change and the nonlinearly thermoviscoelastic constitution of polymers. Pol. Eng. Sci. 27, 86–100 (1987)

    Article  Google Scholar 

  17. Li J., Weng G.J.: Stress–strain relations of a viscoelastic composite reinforced with elliptic cylinders. J. Thermoplast. Compos. Mater. 10, 19–30 (1997)

    Google Scholar 

  18. Li J., Weng G.J.: Influence of inclusion microgeometry on some thermomechanical properties of isotropic polymer-matrix composites. J. Eng. Mater. Technol. Trans. ASME 119(3), 242–250 (1997)

    Article  MathSciNet  Google Scholar 

  19. Lou Y.C., Schapery R.A.: Viscoelastic characterization of a nonlinear fiber-reinforced plastic. J. Compos. Mater. 5, 208–234 (1971)

    Article  Google Scholar 

  20. Marias C., Villoutreix G.: Analysis and modeling of the creep behavior of the thermostable PMR-15 polyimide. J. Appl. Polym. Sci. 69, 1983–1991 (1998)

    Article  Google Scholar 

  21. Morgan, R.J., Shih, E.E., Lincoln, J.E.: Thermal Properties of High Temperature Polymer Matrix Fibrous Composites. Handbook of Thermal Analysis and Calorimetry, vol. 3. In: Cheng, S.Z.D. (ed.) Elsevier Sci, Amsterdam (2002)

  22. Morland L.W., Lee E.H.: Stress analysis for linear viscoelastic materials with temparature variations. Soc. Rheol. Trans. 4, 233–263 (1960)

    Article  MathSciNet  Google Scholar 

  23. Muliana, A.H.: Integrated micromechanical-structural framework for the nonlinear viscoelastic behavior of laminated and pultruded composite materials and structures. Ph.D. Thesis, Georgia Institute of Technology (2004)

  24. Muliana A.H., Haj-Ali R.M.: Nested nonlinear viscoelastic and micromechanical models for the analysis of pultruded composite structures. Mech. Mater. (MOM) J. 36, 1087–1110 (2004)

    Article  Google Scholar 

  25. Muliana A.H., Haj-Ali R.M.: Analyses for creep behavior and collapse of FRP composite structures. Compos. Struct. 73(3), 331–341 (2006)

    Article  Google Scholar 

  26. Muliana A.H., Haj-Ali R.M.: Multi-scale modeling for the long-term behavior of FRP composite structures. AIAA J. 43(8), 1815–1822 (2005)

    Article  Google Scholar 

  27. Muliana A.H., Nair A., Khan K.A., Wagner S.: Characterization of thermo-mechanical viscoelastic and long-term behaviors of multi-layered composite materials. Compos. Sci. Tech. 66, 2907–2924 (2006)

    Article  Google Scholar 

  28. Muliana A.H., Kim J.S.: A concurrent micromechanical model for nonlinear viscoelastic behaviors of composites reinforced with solid spherical particles. Int. J. Solids Struct. 44, 6891–6913 (2007)

    Article  Google Scholar 

  29. Muliana A.H., Khan K.A.: A time integration algorithm for thermo-rheologically complex polymers. Comput. Mater. Sci. 41, 576–588 (2008)

    Article  Google Scholar 

  30. Muliana A.H.: Multi-scale framework for the thermo-viscoelastic analyses of polymer composites. Mech. Res. Commun. 34, 561–567 (2007)

    Article  Google Scholar 

  31. Muliana A.H., Haj-Ali R.: A multi-scale framework for the thermo-rheologically complex multi-layered composites. Int. J. Solids Struct. 45, 2937–2963 (2008)

    Article  Google Scholar 

  32. Nemat-Nasser S., Hori M.: Micromechanics: Overall Props. of Heterogeneous Materials. Elsevier, Amsterdam (1999)

    Google Scholar 

  33. Odegard G., Kumosa M.: Elastic-plastic and failure properties of a unidirectional graphite/PMR-15 composites at room and elevated temperature. Comput. Sci. Tech. 60, 2979–2988 (2000)

    Article  Google Scholar 

  34. Peretz D., Weitsman Y.: The nonlinear thermoviscoelastic characterizations of FM-73 adhesive. J. Rheol. 27(2), 97–114 (1983)

    Article  Google Scholar 

  35. Rupnowski P., Gentz M., Kumosa M.: Mechanical response of a unidirectional graphite fiber/polyimide composite as a function of temperature. Compos. Sci. Tech. 66, 1045–1055 (2006)

    Article  Google Scholar 

  36. Sadkin Y., Aboudi J.: Viscoelastic behavior of thermo-rheologically complex resin matrix composites. Compos. Sci. Tech. 36, 351–365 (1989)

    Article  Google Scholar 

  37. Sawant S., Muliana A.: A thermo-mechanical viscoelastic analysis of orthotropic media. Compos. Struct. 83, 61–72 (2008)

    Article  Google Scholar 

  38. Schapery R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969)

    Article  Google Scholar 

  39. Struik L.C.E.: Physical aging in amorphous polymers and other materials. Elsevier Scientific Publishing Company, New York (1978)

    Google Scholar 

  40. Tschoegl N.W., Knauss W.G., Emri I.: The effect of temperature and pressure on the mechanical properties of thermo and/or piezorheologically simple polymeric materials in thermodynamics equilibrium: a critical review. Mech. Time Dept. Matr. 6, 53–99 (2002)

    Article  Google Scholar 

  41. Walruth D.E.: Viscoelastic response of a unidirectional composite containing two viscoelastic constituents. Exper. Mechan. 31(2), 111–117 (1991)

    Article  Google Scholar 

  42. Walton P.L., Majumdar A.J.: Creep of Kevlar 49 fibre and a Kevlar 49-cement composite. J. Mater. Sci. 18, 2939–2946 (1983)

    Article  Google Scholar 

  43. Wang J.Z., Dillard D.A., Ward T.C.: Temperature and stress effects in the creep of aramid fibers under transient moisture conditions and discussions on the mechanisms. J. Polym. Sci. Part B 30, 1391–1400 (1992)

    Article  Google Scholar 

  44. Wang J.Z., Dillard D.A.: Testing of viscoelasticity of single fibers under transient moisture conditions. Exper. Tech. 15(5), 47–49 (1991)

    Article  Google Scholar 

  45. White S.R., Hartman A.B.: Effect of cure state on stress relaxation in 3501–6 epoxy resin. J. Eng. Mater. Technol. Trans. ASME 119(3), 262–265 (1997)

    Article  Google Scholar 

  46. Wineman A., Rajagopal K.R.: Mech Responses of Polymers, an Intro. Cambridge Univ. Press, London (2000)

    Google Scholar 

  47. Zheng S.F., Weng G.J.: A new constitutive equation for the long-term creep of polymers based on physical aging. Eur. J. Mechan. A Solids 21, 411–421 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia H. Muliana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muliana, A.H., Sawant, S. Responses of viscoelastic polymer composites with temperature and time dependent constituents. Acta Mech 204, 155–173 (2009). https://doi.org/10.1007/s00707-008-0052-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0052-4

Keywords

Navigation