Skip to main content
Log in

Modeling cementitious materials as multiphase porous media: theoretical framework and applications

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper a general model for the analysis of concrete as multiphase porous material, based on the so-called Hybrid Mixture Theory, is presented. The development of the model equations, taking into account both bulk phases and interfaces of the multiphase system is described, starting from the microscopic scale. An exploration of the second law of thermodynamics is also presented: it allows defining several quantities used in the model, like capillary pressure, disjoining pressure or effective stress, and to obtain some thermodynamic restrictions imposed on the evolution equations describing the material deterioration. Then, two specific forms of the general model adapted to the case of concrete at early ages and beyond and to the case of concrete structures under fire are shown. Some numerical simulations aimed to prove the validity of the approach adopted also are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a αβ :

area of αβ interface per averaging volume

A α :

specific Helmholtz free energy for the bulk phase α (J kg−1)

A αβ :

specific Helmholtz free energy for the interface αβ (J kg−1)

a αβ :

specific surface of the αβ-interface (m−1)

C p :

effective specific heat of porous medium (J kg−1 K−1)

\({C_p^{\rm g}}\) :

specific heat of gas mixture (J kg−1 K−1)

\({C_p^{\rm w}}\) :

specific heat of liquid phase (J kg−1 K−1)

D :

total damage parameter (–)

d :

mechanical damage parameter (–)

d α :

strain rate tensor of the bulk phase α (s−1)

\({{\bf D}_{\rm d}^{\rm gw}}\) :

effective diffusivity tensor of water vapor in dry air (m2 s−1)

E:

Young’s modulus (Pa)

E0 :

Young’s modulus of mechanically undamaged material (Pa)

E s :

strain tensor for the solid phase (finite strain)(–)

E α :

internal energy of bulk phase α (J kg−1)

E αβ :

internal energy of interface αβ (J kg−1)

\({\hat{e}_{\alpha \beta}^\alpha}\) :

rate of mass transfer to the bulk phase α from interface αβ (kg m−3 s−1)

\({\hat{e}_{\alpha \beta \gamma}^{\alpha \beta}}\) :

rate of mass transfer to the interface αβ from the contact line αβγ (kg m−3 s−1)

e s :

elastic strain for the solid phase (infinitesimal deformations) (–)

g :

gravity acceleration (m s−2)

g αβ :

acceleration of the αβ interface (m s−2)

Hα :

enthalpy of the bulk phase α (J kg−1)

Hαβ :

enthalpy of the interface αβ (J kg−1)

hα :

heat source in the bulk phase α (W kg−1)

hαβ :

heat source on the interface αβ (W kg−1)

I :

unit tensor (–)

\({J_{\alpha \beta}^\alpha}\) :

curvature of the αβ interface with respect to the bulk phase α (m−1)

\({{\bf J}_d^{\rm gw}}\) :

diffusive flux of vapor (kg m−2 s−1)

\({{\bf J}_d^{\rm ga}}\) :

diffusive flux of dry air (kg m−2 s−1)

k :

absolute permeability tensor (m2)

k :

absolute permeability (scalar) (m2)

k rπ :

relative permeability of π-phase (π = g,w) (–)

\({\dot {m}_{\rm dehydr}}\) :

rate of mass due to dehydration (kg m−3 s−1)

\({\dot {m}_{\rm vap}}\) :

rate of mass due to phase change (kg m−3 s−1)

n :

total porosity (pore volume/total volume) (–)

p c :

capillary pressure (Pa)

p g :

pressure of gas phase (Pa)

p w :

pressure of liquid water (Pa)

p s :

solid skeleton pressure (Pa)

p ga :

dry air partial pressure (Pa)

p gw :

water vapor partial pressure (Pa)

q α :

heat flux vector for the bulk phase α (W m−2)

q αβ :

heat flux vector for the interface αβ (W m−2)

\({\hat {Q}_{\alpha \beta}^\alpha}\) :

body supply of the heat to the bulk phase α from the interface αβ (W m−3)

\({\hat {Q}_{\alpha \beta \gamma}^{\alpha \beta}}\) :

body supply of the heat to the interface αβ from the contact line αβγ (W m−3)

Q :

fourth order tensor for the definition of transient thermal strain (–)

S w :

liquid phase volumetric saturation (liquid volume/pore volume) (–)

\({{\hat{\bf S}}_{\alpha \beta \gamma}^{\alpha \beta}}\) :

body supply of momentum to the αβ-interfaces from the αβγ-contact line (kg m−2 s−2)

s αβ :

stress tensor for the αβ-interface (Pa m)

T :

absolute temperature (K)

T α :

absolute temperature of the α-phase (K)

T αβ :

absolute temperature of the αβ-interface (K)

T cr :

critical temperature of water (K)

T max :

maximum temperature attained during dehydration process (K)

t :

time (s)

t s :

Cauchy stress tensor of the solid phase (Pa)

t α :

partial stress tensor of the α-phase (Pa)

t Total :

total stress tensor of the multiphase system (Pa)

\({{\hat {\bf T}}_{\alpha \beta}^\alpha}\) :

Body supply of momentum to the bulk phases from the interfaces (kg m−2 s−2)

u :

displacement vector of solid matrix (m)

V :

thermo-chemical damage parameter (–)

v α :

velocity of the α-phase (m s−1)

v α, s :

relative velocity of the α-phase (with respect to the solid phase “s”) (m s−1)

v α, αβ :

relative velocity of the α-phase (with respect to αβ-interface) (m s−1)

v gs :

relative velocity of gaseous phase (m s−1)

v ws :

relative velocity of liquid phase (m s−1)

w αβ :

velocity of the interface αβ (m s−1)

w αβ, s :

relative velocity of the αβ-interface (with respect to the solid phase “s”) (m s−1)

\({x_{\rm s}^{\rm ws}}\) :

solid surface fraction in contact with the wetting phase (water) (–)

\({x_{\rm s}^{\rm gs}}\) :

solid surface fraction in contact with the non-wetting phase (gas) (–)

α :

generic bulk phase

α :

Biot’s constant (–)

α c :

convective heat transfer coefficient (W m−2 K−1)

αβ :

generic interface of α-and β-phases

β tchem :

thermo-chemical strain coefficient (K−1)

β c :

convective mass transfer coefficient (m s−1)

β s :

cubic thermal expansion coefficient of solid (K−1)

β swg :

combine (solid + liquid + gas) cubic thermal expansion coefficient (K−1)

β sw :

combine (solid + liquid) cubic thermal expansion coefficient (K−1)

\({\bar {\beta}_{\rm tr}}\) :

normalized transient thermal strain coefficient (K−1 s)

β w :

thermal expansion coefficient of liquid water (K−1)

χ eff :

effective thermal conductivity (W m−1 K−1)

ΔHvap :

enthalpy of vaporization per unit mass (J kg−1)

ΔHdehydr :

enthalpy of dehydration per unit mass (J kg−1)

ε sh :

shrinkage strain tensor (–)

ε tchem :

thermo-chemical strain tensor (–)

ε th :

thermal strain tensor (–)

ε tot :

total strain tensor (–)

ε tr :

transient thermal strain tensor (–)

\({{\bar{\boldsymbol \varepsilon}}_{\rm tr}}\) :

normalized transient thermal strain (–)

\({\tilde {\varepsilon}}\) :

equivalent strain in damage theory of Mazars (–)

Γαβ :

surface excess mass density of αβ-interface (kg m−2)

Γhydr :

degree of hydration (or dehydration) (–)

γ αβ :

macroscopic interfacial tension of the αβ-interface (J m−2)

η α :

volumetric fraction of the α phase (–)

μ π :

dynamic viscosity of the constituent π-phase (π = g, w) (Pa s)

λ α :

specific entropy of the α-phase (J kg−1 K−1)

λ αβ :

specific entropy of the αβ-interface (J kg−1 K−1)

Λα :

rate of net production of entropy of the α-phase (W m−3 K−1)

Λαβ :

rate of net production of entropy of the αβ-interface (W m−3 K−1)

Λ :

stiffness matrix of damaged material (Pa)

Λ o :

stiffness matrix of undamaged material (Pa)

Πw :

disjoining pressure (Pa)

ρ :

apparent density of porous medium (kg m−3)

ρ α :

density of the α phase (kg m−3)

ρ g :

gas phase density (kg m−3)

ρ w :

liquid phase density (kg m−3)

ρ s :

solid phase density (kg m−3)

ρ ga :

mass concentration of dry air in gas phase (kg m−3)

ρ gw :

mass concentration of water vapor in gas phase (kg m−3)

\({\hat {\Phi}_{\alpha \beta}^\alpha}\) :

body entropy supply to the bulk phase α from the interface αβ (W m−3 K−1)

\({\hat {\Phi}_{\alpha \beta \gamma}^{\alpha \beta}}\) :

body entropy supply to the interface αβ from the contact line αβγ (W m−3 K−1)

τ s :

Bishop effective stress tensor of the skeleton (Pa)

\({\tilde{{\boldsymbol{\tau}}}^{\rm s}}\) :

“net” effective stress tensor of the skeleton (Pa)

\({\frac{\partial}{\partial t}}\) :

partial time derivative

grad:

gradient operator (spatial description)

div:

divergence operator (spatial description)

References

  1. Svendsen B., Hutter K.: On the thermodynamics of a mixture of isotropic materials with constraints. Int. J. Eng. Sci. 33, 2021–2054 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. de Boer R.: Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. Appl. Mech. 49, 201 (1996)

    Google Scholar 

  3. Whitaker S.: Heat and Mass Transfer in Granular Porous Media. Advances in Drying 1, Hemisphere, New York (1980)

    Google Scholar 

  4. Hassanizadeh S.M., Gray W.G.: General conservation equations for multi-phase systems. 1. Averaging procedure. Adv. Water Resour. 2, 131–144 (1979)

    Article  Google Scholar 

  5. Hassanizadeh S.M., Gray W.G.: General conservation equations for multi-phase systems: 2 Mass, momenta, energy and entropy equations. Adv. Water Resour. 2, 191–203 (1979)

    Article  Google Scholar 

  6. Hassanizadeh S.M., Gray W.G.: General conservation equations for multi-phase systems: 3 Constitutive theory for porous media flow. Adv. Water Resour. 3, 25–40 (1980)

    Article  Google Scholar 

  7. Auriault J.L.: Non saturated deformable porous media: quasistatics. Transp. Porous Media 2, 45–64 (1987)

    Article  Google Scholar 

  8. Auriault J.L.: Dynamic behaviour in porous media. In: Bear, J., Corsapcioglu, M.Y.(eds) Transport Processes in Porous Media, pp. 471–519. Kluwer, Dordrecht (1991)

    Google Scholar 

  9. Hassanizadeh S.M., Gray W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13, 169–186 (1990)

    Article  Google Scholar 

  10. Schrefler B.A.: Mechanics and thermodynamics of saturated-unsaturated porous materials and quantitative solutions. Appl. Mech. Rev. 55, 351–388 (2002)

    Article  Google Scholar 

  11. Lewis R.W., Schrefler B.A.: The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, Chichester (1998)

    MATH  Google Scholar 

  12. Gawin D., Pesavento F., Schrefler B.A.: Modelling of hygro-thermal behaviour and damage of concrete at temperature above the critical point of water. Int. J. Numer. Anal. Meth. Geomech. 26, 537–562 (2002)

    Article  MATH  Google Scholar 

  13. Gray W.G., Schrefler B.A.: Thermodynamic approach to effective stress in partially saturated porous media. Eur. J. Mech. A/Solids 20, 521–538 (2001)

    Article  MATH  Google Scholar 

  14. Gray W.G., Schrefler B.A.: Analysis of the solid phase stress tensor in multiphase porous media. Int. J. Numer. Anal. Meth. Geomech. 31, 541–581 (2007)

    Article  Google Scholar 

  15. Gawin D., Pesavento F., Schrefler B.A.: Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation. Comput. Methods Appl. Mech. Eng. 192, 1731–1771 (2003)

    Article  MATH  Google Scholar 

  16. Gawin D., Pesavento F., Schrefler B.A.: Modelling of deformations of high strength concrete at elevated temperatures. Concrete Sci. Eng./Mat. Struct. 37, 218–236 (2004)

    Google Scholar 

  17. Mazars, J.: Application de la mecanique de l’ endommagement au comportament non lineaire et la rupture du beton de structure. Thèse de Doctorat d’ Etat, L.M.T. Universite de Paris, France (1984)

  18. Chaboche J.L.: Continuum damage mechanics: part I—general concepts. J. Appl. Mech. 55, 59–64 (1988)

    Article  Google Scholar 

  19. Nechnech W., Reynouard J.M., Meftah F.: On modelling of thermo-mechanical concrete for the finite element analysis of structures submitted to elevated temperatures. In: Borst, R., Mazars, J., Pijaudier-Cabot, G., Mier, J.G.M.(eds) Fracture Mechanics of Concrete Structures, pp. 271–278. Swets and Zeitlinger, Lisse (2001)

    Google Scholar 

  20. Staverman, A.J., Schwarzl, P.: Thermodynamics of viscoelastic behaviour (model theory), vol. 44, pp. 363–374. Proceedings of Academic Science, The Netherlands (1952)

  21. Staverman, A.J., Schwarzl, P.: Non-equilibrium thermodynamics of visco-elastic behaviour, vol. 44, pp. 375–381. Proceedings of Academic Science, The Netherlands (1952)

  22. Truesdell C.: Rational Thermodynamics. McGraw-Hill, New York (1969)

    Google Scholar 

  23. Bazant Z.P., Huet C.: Thermodynamic functions for ageing viscoelasticity: integral form without internal variables. Int J Solids Struct. 25, 3993–4016 (1999)

    Article  Google Scholar 

  24. Gawin D., Pesavento F., Schrefler B.A.: Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part II: Shrinkage and creep of concrete. Int. J. Numer. Meth. Eng. 67, 332–363 (2006)

    Article  MATH  Google Scholar 

  25. Zienkiewicz O.C., Taylor R.L.: The Finite Element Method, vol. 1: The Basis. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  26. Gawin D., Majorana C.E., Schrefler B.A.: Numerical analysis of hygro-thermic behaviour and damage of concrete at high temperature. Mech. Cohes.-Frict. Mater. 4, 37–74 (1999)

    Article  Google Scholar 

  27. Bianco M., Bilardi G., Pesavento F., Pucci G., Schrefler B.A.: A frontal solver tuned for fully-coupled nonlinear hygro-thermo-mechanical problems. Int. J. Numer. Meth. Eng. 57, 1801–1818 (2003)

    Article  MATH  Google Scholar 

  28. Wang X., Gawin D., Schrefler B.A.: A parallel algorithm for thermo-hydro-mechanical analysis of deforming porous media. Comp. Mech. 19, 94–104 (1996)

    Article  MATH  Google Scholar 

  29. Jensen O.M., Hansen P.F.: Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste. Cement Concrete Res. 29, 567–575 (1999)

    Article  Google Scholar 

  30. Ulm F.-J., Coussy O.: Modeling of thermo-chemo-mechanical couplings of concrete at early ages. J. Eng. Mech. (ASCE) 121, 785–794 (1995)

    Article  Google Scholar 

  31. Ulm F.-J., Coussy O.: Strength growth as chemo-plastic hardening in early age concrete. J. Eng. Mech. (ASCE) 122, 1123–1132 (1996)

    Article  Google Scholar 

  32. Gawin D., Pesavento F., Schrefler B.A.: Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena. Int. J. Numer. Meth. Eng. 67, 299–331 (2006

    Article  MATH  Google Scholar 

  33. Cervera M., Olivier J., Prato T.: A thermo-chemo-mechanical model for concrete. II: Damage and creep. J. Eng. Mech. (ASCE) 125, 1028–1039 (1999)

    Article  Google Scholar 

  34. Bazant Z.P.: Mathematical Modeling of Creep and Shrinkage of Concrete. Wiley, Chichester (1988)

    Google Scholar 

  35. Bazant Z.P., Prasannan S.: Solidification theory for concrete creep. I: Formulation. J. Eng. Mech. (ASCE) 115, 1691–1703 (1989)

    Google Scholar 

  36. Carol I., Bazant Z.P.: Viscoelasticity with aging caused by solidification of non-aging constituent. J. Eng. Mech. (ASCE) 119, 2252–2269 (1993)

    Article  Google Scholar 

  37. Bazant Z.P., Xi Y.: Continuous retardation spectrum for solidification theory of concrete creep. J. Eng. Mech. (ASCE) 121, 281–288 (1995)

    Article  Google Scholar 

  38. Bazant Z.P., Hauggaard A.B., Baweja S, Ulm F.-J.: Microprestress-solidification theory for concrete creep. I: Aging and drying effects. J. Eng. Mech. (ASCE) 123, 1188–1194 (1997)

    Article  Google Scholar 

  39. Bazant Z.P., Hauggaard A.B., Baweja S.: Microprestress-solidification theory for concrete creep. II: Algorithm and verification. J. Eng. Mech. (ASCE) 123, 1195–1201 (1997)

    Article  Google Scholar 

  40. Gawin D., Pesavento F., Schrefler B.A.: Modelling creep and shrinkage of concrete by means of effective stress. Mat. Struct. 40, 579–591 (2007). doi:10.1617/s11527-006-9165-1

    Article  Google Scholar 

  41. Russel, H.G., Corley, W.G.: Time-dependent behaviour of columns. In: Water tower place, research and development bulletin RD052.01B, Portland Cement Association (1977)

  42. L’Hermite, R., Mamillan, M., Lefevre, C.: Nouveaux resultats de rechercher sur la de′formation et la rupture du beton (in French). Supplement aux annales de l’Institute Technique du Batiment et des Travaux Publics 207/208, pp. 325–345 (1965)

  43. Khoury G.A.: Strain components of nuclear-reactor-type concretes during first heating cycle. Nucl. Eng. Des. 156, 313–321 (1995)

    Article  Google Scholar 

  44. Thelandersson S.: Modeling of combined thermal and mechanical action on concrete. J. Eng. Mech. (ASCE) 113, 893–906 (1987)

    Google Scholar 

  45. Schrefler B.A., Brunello P., Gawin D., Majorana C.E., Pesavento F.: Concrete at high temperature with application to tunnel fire. Comput. Mech. 29, 43–51 (2002)

    Article  MATH  Google Scholar 

  46. Phan L.T., Lawson J.R., Davis F.L.: Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete. Mat. Struct. 34, 83–91 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pesavento.

Additional information

Dedicated to Professor Wilhelm Schneider on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pesavento, F., Gawin, D. & Schrefler, B.A. Modeling cementitious materials as multiphase porous media: theoretical framework and applications. Acta Mech 201, 313–339 (2008). https://doi.org/10.1007/s00707-008-0065-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0065-z

Keywords

Navigation