Skip to main content
Log in

Hamiltonian dynamic analysis of an axially translating beam featuring time-variant velocity

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A dynamic analysis is presented for an axially translating cantilever beam simulating the spacecraft antenna featuring time-variant velocity. The extended Hamilton’s principle is employed to formulate the governing partial differential equations of motion for an axially translating Bernoulli–Euler beam. Further, the assumed modes method and the separation of variables are utilized to solve the resulting equation of motion. Attention is focused on assessing the coupling effects between the axial translation motion and the flexural deformation during the beam extension or retraction operations upon the vibratory motion of a beam with an arbitrarily varying length under a prescribed time-variant velocity field. A number of numerical simulations are also presented to illustrate the qualitative features of the underlying mechanical vibration of an axially extending or contracting flexible beam. In general, the transverse beam vibration is stabilized during extension and unstabilized during retraction. The axial acceleration of a translating beam does not affect the transverse vibratory system stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Q., Wei B.: Robust time-optimal control of uncertain flexible structure. AIAA J. Guid. Contr. Dynam. 15(2), 597–604 (1992)

    Article  MATH  Google Scholar 

  2. Huang Y.A., Deng Z.C.: Decentralized sliding mode control for a spacecraft flexible appendage based on finite element method. Chin. J. Aeronaut. 18(3), 230–236 (2005)

    Google Scholar 

  3. Wickert J.A., Mote C.D. Jr: Classical vibration analysis of axially moving continua. ASME J. Appl. Mech. 57, 738–744 (1990)

    Article  MATH  Google Scholar 

  4. Wickert J.A., Mote C.D. Jr: Current research on the vibration and stability of axially-moving materials. Shock Vib. 29(5), 3–13 (1988)

    Article  Google Scholar 

  5. Rao G.V.: Linear dynamics and active control of an elastically supported traveling string. Comput. Struct. 43(6), 1041–1049 (1992)

    Article  Google Scholar 

  6. Wickert J.A., Mote C.D. Jr: Linear transverse vibration of an axially moving string-particle system. J. Acoust. Soc. Am. 84(3), 963–969 (1988)

    Article  Google Scholar 

  7. Kong L., Parker R.G.: Approximate eigensolutions of axially moving beams with small flexural stiffness. J. Sound Vib. 276, 459–469 (2004)

    Article  Google Scholar 

  8. Kong L., Parker R.G.: Vibration of an axially moving beam wrapping on fixed pulleys. J. Sound Vib. 280, 1066–1074 (2005)

    Article  Google Scholar 

  9. Wickert J.A.: Non-linear vibration of a traveling tensioned beam. Int. J. Non-Linear Mech. 27, 503–517 (1992)

    Article  MATH  Google Scholar 

  10. Chakraborty G., Mallik A.K., Hatal H.: Non-linear vibration of traveling beam. Int. J. Non-Linear Mech. 34, 655–670 (1999)

    Article  MATH  Google Scholar 

  11. Chakraborty G., Mallik A.K.: Non-linear vibration of a traveling beam having an intermediate guide. Nonlinear Dyn. 20, 247–265 (1999)

    Article  MATH  Google Scholar 

  12. Pellicano F., Zirilli F.: Boundary layers and non-linear vibrations in an axially moving beam. Int. J. Non-linear Mech. 33(4), 691–711 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fung R.F., Huang J.S., Chen Y.C., Yao C.M.: Nonlinear dynamics analysis of the viscoelastic string with a harmonically varying transport speed. Comput. Struct. 66(6), 777–784 (1988)

    Article  Google Scholar 

  14. Chen S.H., Huang J.L., Sze K.Y.: Multidimensional Lindstedt–Poincaré method for nonlinear vibration of axially moving beams. J. Sound Vib. 306(1–2), 1–11 (2007)

    Article  Google Scholar 

  15. Wang P.K.C., Wei J.D.: Vibrations in a moving flexible robot arm. J. Sound Vib. 116(1), 149–160 (1987)

    Article  Google Scholar 

  16. Al-Bedoor B.O., Khulief Y.A.: Vibration motion of an elastic beam with prismatic and revolute joints. J. Sound Vib. 190(2), 195–206 (1996)

    Article  Google Scholar 

  17. Zhu W.D., Ni J.: Energetic and stability of translating media with an arbitrarily varying length. J. Vib. Acoust. 122, 295–304 (2000)

    Article  Google Scholar 

  18. Stylianou M., Tabarrok B.: Finite element analysis of an axially moving beam. Part I. Time integration. J. Sound Vib. 178(4), 433–453 (1994)

    Article  Google Scholar 

  19. Ozkaya E., Parkdemirli M.: Vibrations of an axially accelerating beam with small flexural stiffness. J. Sound Vib. 234(3), 521–535 (2000)

    Article  Google Scholar 

  20. Ozkaya E., Parkdemirli M.: Vibrations of an axially moving beam with time-variant velocity. J. Sound Vib. 227(2), 239–257 (1999)

    Article  Google Scholar 

  21. Chen L.Q., Yang X.D.: Transverse nonlinear dynamics of axially accelerating viscoelastic beams based on 4-term Galerkin truncation. Chaos Solitons Fractals 27, 748–757 (2006)

    Article  MATH  Google Scholar 

  22. Tadikonda S.S.K., Baruh H.: Dynamics and control of a translating flexible beam with a prismatic joint. ASME J. Dyn. Syst. Meas. Control 114(3), 422–427 (1992)

    Article  Google Scholar 

  23. Lee U., Kim J., Oh H.: Spectral analysis for the transverse vibration of an axially moving Timoshenko beam. J. Sound Vib. 271(3–5), 685–703 (2004)

    Article  Google Scholar 

  24. Chen Y.-H., Huang Y.-H., Shih C.-T.: Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load. J. Sound Vib. 241(5), 809–824 (2001)

    Article  Google Scholar 

  25. Lee U., Oh H.: Dynamics of an axially moving viscoelastic beam subject to axial tension. Int. J. Solids Struct. 42, 2381–2398 (2005)

    Article  Google Scholar 

  26. Hou Z., Zu J.W.: Non-linear free oscillations of moving viscoelastic belts. Mech. Mach. Theory 37, 925–940 (2002)

    Article  MATH  Google Scholar 

  27. Sze K.Y., Chen S.H., Huang J.L.: The incremental harmonic balance method for nonlinear vibration of axially moving beams. J. Sound Vib. 281, 611–626 (2005)

    Article  Google Scholar 

  28. You C., Hong J., Cai G.: Modeling study of a flexible hub-beam system with large motion and with considering the effect of shear deformation. J. Sound Vib. 295, 282–293 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L.H., Hu, Z.D., Zhong, Z. et al. Hamiltonian dynamic analysis of an axially translating beam featuring time-variant velocity. Acta Mech 206, 149–161 (2009). https://doi.org/10.1007/s00707-008-0104-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0104-9

Keywords

Navigation