Skip to main content
Log in

Combinatorial optimization of special graphs for nodal ordering and graph partitioning

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

There are numerous applications of graph theory and algebraic graph theory in combinatorial optimization and optimal structural analysis. In this paper, a new canonical form as well as its relation with four structural models often encountered in practice and their corresponding graphs are presented. Furthermore, the block diagonalization of this form, which is performed using three Kronecker products and unsymmetric matrices, is studied. This block diagonalization leads to an efficient method for the eigensolution of adjacency and Laplacian matrices of special graphs. The eigenvalues and eigenvectors are used for efficient nodal ordering and partitioning of large structural models. The present method is far more simple than any existing general approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaveh A., Sayarinejad M.A.: Eigensolutions for matrices of special patterns. Commun. Numer. Methods Eng. 19, 125–136 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Kaveh A., Sayarinejad M.A.: Eigenvalues of factorable matrices with form IV symmetry. Commun. Numer. Methods Eng. 21, 269–278 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kaveh A.: Optimal Structural Analysis, 2nd edn. Wiley, Somerset, UK (2006)

    MATH  Google Scholar 

  4. Kaveh A., Rahami H.: Block diagonalization of adjacency and Laplacian matrices for graph product; applications in structural mechanics. Int. J. Numer. Methods Eng. 68, 33–63 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Robbe M., Sadkane M.: Convergence analysis of the block householder block diagonalization algorithm. BIT Numer. Math. 45, 181–195 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Park H.: Efficient diagonalization of oversized matrices on a distributed-memory multiprocessor. Ann. Oper. Res. 22, 253–269 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Mathias R., Stewart G.W.: A block QR algorithm and the singular value decomposition. Linear Algebra Appl. 182, 91–100 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hasan M.A., Hasan J.A.K.: Block eigenvalue decomposition using nth roots of identity matrix. 41st IEEE Conf. Decis. Control 2, 2119–2124 (2002)

    MathSciNet  Google Scholar 

  9. Gould P.: The geographical interpretation of eigenvalues. Trans. Inst. British Geographer 42, 53–58 (1967)

    Article  Google Scholar 

  10. Straffing P.D.: Linear algebra in geography: eigenvectors of networks. Math. Mag. 53, 269–276 (1980)

    Article  MathSciNet  Google Scholar 

  11. Maas C.: Transportation in graphs and admittance spectrum. Discrete Appl. Math. 16, 31–49 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grimes R.G., Pierce D.J., Simon H.D.: A new algorithm for finding a pseudo-peripheral node in a graph. SIAM J. Anal. Appl. 11, 323–334 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Paulino G.H., Menezes I.F.M., Gattass M., Mukherjee S.: Node and element resequencing using Laplacian of finite element graph, Part I: General concepts and algorithms. Int. J. Numer. Methods Eng. 37, 1511–1530 (1994)

    Article  MATH  Google Scholar 

  14. Paulino G.H., Menezes I.F.M., Gattass M., Mukherjee S.: Node and element resequencing using Laplacian of finite element graph, Part II: Implementation and numerical results. Int. J. Numer. Methods Eng. 37, 1531–1555 (1994)

    Article  Google Scholar 

  15. Fiedler M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23, 298–305 (1973)

    MathSciNet  Google Scholar 

  16. Mohar B. et al.: The Laplacian spectrum of graphs. In: Alavi, Y. et al. (eds) Entitled Graph Theory, Combinatorics and Applications vol, 2, pp. 871–898. Wiley, New York (1991)

    Google Scholar 

  17. Pothen A., Simon H., Liou K.P.: Partitioning of sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Simon H.D.: Partitioning of unstructured problems for parallel processing. Comput. Syst. Eng. 2, 135–148 (1991)

    Article  Google Scholar 

  19. Seale, C., Topping, B.H.V.: Parallel implementation of recursive spectral bisection. In: Developments in Computational Techniques for Structural Engineering, vol. 95, pp. 459–473. Edinburgh, UK (1995)

  20. Barnard S., Pothen A., Simon H.: A spectral algorithm for envelope reduction of sparse matrices. J. Numer. Linear Algebra Appl. 2, 317–334 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kaveh A., Rahimi Bondarabady H.A.: A multi-level finite element nodal ordering using algebraic graph theory. Finite Elem. Anal. Des. 38, 245–261 (2001)

    Article  MathSciNet  Google Scholar 

  22. Kaveh A., Rahami H.: Compound matrix block diagonalization for efficient solution of eigenproblems in structural mechanics. Acta Mech. 188, 155–166 (2007)

    Article  MATH  Google Scholar 

  23. Jacques I., Judd C.: Numerical Analysis. Chapman and Hall, UK (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaveh, A., Koohestani, K. Combinatorial optimization of special graphs for nodal ordering and graph partitioning. Acta Mech 207, 95–108 (2009). https://doi.org/10.1007/s00707-008-0107-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0107-6

Keywords

Navigation