Skip to main content
Log in

Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Microtubules are hollow cylindrical filaments of the eukaryotic cytoskeleton characterized by extremely low shear modulus. In this paper, an orthotropic elastic shell model with transverse shearing is developed to study the effects of transverse shearing on shell-like mechanics of microtubules. The study is based on a detailed comparison between four elastic beam and shell models with and without transverse shearing. It is shown that the length-dependent flexural rigidity of microtubules predicted by the present orthotropic shell model with transverse shearing is in good agreement with known experimental data and is consistently close to that given by the Timoshenko-beam model. Our results show that transverse shearing is essential for shell-like deformation of microtubules when the axial wave-length is not extremely long (compared to the diameter of microtubules which is ~25 nm) or the circumferential wave-number is larger than unity. In particular, transverse shearing is found to significantly lower the critical pressure for buckling of a long microtubule under radial pressure and leads to an even better agreement with recently observed experimental data. These results suggest that the 2D orthotropic shell model with transverse shearing is suitable to study the shell-like mechanics of microtubules for short axial wave-length and circumferential wave-number exceeding unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nogales E.: Structural insights into microtubule function. Annu. Rev. Biochem. 69, 277–302 (2000)

    Article  MathSciNet  Google Scholar 

  2. Howard J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates Inc, Sunderland (2001)

    Google Scholar 

  3. Cotterill R.: Biophysics-An Introduction. Wiley, New York (2002)

    Google Scholar 

  4. Boal D.: Mechanics of the Cell. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  5. Scholey J.M., Mascher I.B., Mogilner A.: Cell division. Nature 422, 746–752 (2003)

    Article  Google Scholar 

  6. Schliwa M., Woehlke G.: Molecular motors. Nature 422, 759–765 (2003)

    Article  Google Scholar 

  7. Carter N.J., Cross R.A.: Mechanics of the kinesin step. Nature 435, 308–312 (2005)

    Article  Google Scholar 

  8. Kurachi M., Hoshi M., Tashiro H.: Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Cell Motil. Cytoskeleton 30, 221–228 (1995)

    Article  Google Scholar 

  9. Dogterom M., Yurke B.: Measurement of the force-velocity relation for growing microtubules. Science 278, 856–860 (1997)

    Article  Google Scholar 

  10. Takasone T., Juodkazis S., Kawagishi Y., Yamaguchi A., Matsuo S., Sakakibara H., Nakayama H., Misawa H.: Flexural rigidity of a single microtubule. Japanese J. Appl. Phys. 41, 3015–3019 (2002)

    Article  Google Scholar 

  11. Kikumoto M., Kurachi M., Tosa V., Tashiro H.: Flexural rigidity of individual microtubules measured by a buckling force with optical traps. Biophys. J. 90, 1687–1696 (2006)

    Article  Google Scholar 

  12. Brangwynne C.P., Mackintosh F.C., Kumar S., Geisse N.A., Talbot J., Mahadevevan L., Parker K.K., Ingber D.E., Weitz D.E.: Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173, 733–741 (2006)

    Article  Google Scholar 

  13. Venier P., Maggs A.C., Carlier M.F., Pantaloni D.: Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. J. Biol. Chem. 269, 13353–13360 (1994)

    Google Scholar 

  14. Gittes F., Mickey B., Nettleton J., Howard J.: Flexural rigidity of microtubules and actin filaments measured from thermal fluctuation in shape. J. Cell Biol. 120, 923–934 (1995)

    Article  Google Scholar 

  15. Vinckier A., Dumortier C., Engelborghs Y., Hellemans L.: Dynamical and mechanical study of immobilized microtubules with atomic force microscopy. J. Vac. Sci. Tech. B 14, 1427–1431 (1996)

    Article  Google Scholar 

  16. Cassimeris L., Gard D., Tran P.T., Erickson H.P.: XMAP215 is a long thin molecule that does not increase microtubule stiffness. J. Cell Sci. 114, 3025–3033 (2001)

    Google Scholar 

  17. Janson M.E., Dogterom M.A.: Bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity. Biophys. J. 87, 2723–2736 (2004)

    Article  Google Scholar 

  18. Pampaloni F., Lattanzi G., Jonas A., Surrey T., Frey E., Florin E.: Thermal fluctuation of grafted microtubules provides evidence of a length-dependent persistent length. PNAS 103, 10248–10253 (2006)

    Article  Google Scholar 

  19. Kis A., Kasas S., Babić B., Kulik A.J., Benoît W., Briggs G.A.D., Schönenberger C., Catsicas S., Forró L.: Nanomechanics of microtubules. Phys. Rev. Lett. 89, 248101-1-4 (2002)

    Article  Google Scholar 

  20. Kasas S., Cibert C., Kis A., Rios P.D.L., Riederer B.M., Forro L., Dietler G., Catsicas S.: Oscillation modes of microtubules. Biol. Cell 96, 697–700 (2004)

    Article  Google Scholar 

  21. Pablo P.J., Schaap L.A.T., Mackintosh F.C., Schmit C.F.: Deformation and collapse of microtubules on the nanometer scale. Phys. Rev. Lett. 91, 098101-1-4 (2003)

    Google Scholar 

  22. Needleman D.J., Ojeda-Lopez M.A., Raviv U., Ewert K., Jayna B., Jones J.B., Miller H.P., Wilson L., Safinya C.R.: Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions. Phys. Rev. Lett. 93, 198104-1-4 (2004)

    Article  Google Scholar 

  23. Sirenko Y.M., Stroscio M.A., Kim K.W.: Elastic vibration of microtubules in a fluid. Phys. Rev. E 53, 1003–1010 (1996)

    Article  Google Scholar 

  24. Kasas S., Kis A., Riederer B.M., Forro L., Dietler G., Catsicas S.: Mechanical properties of microtubules explored using the finite elements method. Chem. Phys. Chem. 5, 252–257 (2004)

    Google Scholar 

  25. Nogales E., Whittaker M., Milligan R.A., Downing K.H.: High-resolution model of the microtubule. Cell 96, 79–88 (1999)

    Article  Google Scholar 

  26. VanBuren V., Odde D.J., Cassimeris L.: Estimates of lateral and longitudinal bond energies within the microtubule lattice. Proc. Nat. Acad. Sci. USA 99, 6035–6040 (2002)

    Article  Google Scholar 

  27. Tuszynski J.A., Luchko T., Portet S., Dixon J.M.: Anisotropic elastic properties of microtubules. Eur. Phys. J. E 17, 29–35 (2005)

    Article  Google Scholar 

  28. Timoshenko S.P., Young D.H., Weave W.: Vibration Problems in Engineering. Wiley, New York (1974)

    Google Scholar 

  29. Saito T., Parbery R.D., Okuno S., Kawand S.: Parameter identification for aluminum honeycomb sandwich panels based on orthotropic Timoshenko beam theory. J. Sound Vib. 208, 271–287 (1997)

    Article  Google Scholar 

  30. Shi, Y.J., Guo, W.L., Ru, C.Q.: Relevance of Timoshenko-beam model for microtubules of low shear modulus. Physica E (2008). doi:10.1016/j.physe.2008.06.025

  31. Flügge W.: Stresses in Shells. Springer, Berlin (1960)

    MATH  Google Scholar 

  32. Bert C.W., Birman V.: Parametric instability of thick, orthotropic, circular cylindrical shells. Acta Mech. 71, 61–76 (1988)

    Article  MATH  Google Scholar 

  33. Christoforou A.P., Swanson S.R.: Analysis of simply-supported orthotropic cylindrical shells subject to lateral impact loads. J. Appl. Mech. (ASME) 57, 376–382 (1990)

    Article  Google Scholar 

  34. Li C., Ru C.Q., Mioduchowski A.: Length-dependence of flexural rigidity as a result of anisotropic elastic properties of microtubules. Biochem. Biophys. Res. Commun. 349, 1145–1150 (2006)

    Article  Google Scholar 

  35. Wang C.Y., Ru C.Q., Mioduchowski A.: Orthotropic elastic shell model for buckling of microtubules. Phys. Rev. E 74(052901), 1–4 (2006)

    Google Scholar 

  36. Wang C.Y., Ru C.Q., Mioduchowski A.: Vibration of microtubules as orthotropic elastic shells. Physica E 35, 48–56 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gu.

Additional information

C. Q. Ru is on leave from the University of Alberta, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, B., Mai, Y.W. & Ru, C.Q. Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing. Acta Mech 207, 195–209 (2009). https://doi.org/10.1007/s00707-008-0121-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0121-8

Keywords

Navigation