Skip to main content
Log in

Analytical expressions for stress and displacement fields in viscoelastic axisymmetric plane problem involving time-dependent boundary regions

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An analytical solution is developed in this paper for viscoelastic axisymmetric plane problems under stress or displacement boundary condition involving time-dependent boundary regions using the Laplace transform. The explicit expressions are given for the radial and circumferential stresses under stress boundary condition and the radial displacement under displacement boundary condition. The results indicate that the two in-plane stress components and the displacement under corresponding boundary conditions have no relation with material constants. The general form of solutions for the remaining displacement or stress field is expressed by the inverse Laplace transform concerning two relaxation moduli. As an application to deep excavation of a circular tunnel or finite void growth, explicit solutions for the analysis of a deforming circular hole in both infinite and finite planes are given taking into account the rheological characteristics of the rock mass characterized by a Boltzmann or Maxwell viscoelastic model. Numerical examples are given to illustrate the displacement and stress response. The method proposed in this paper can be used for analysis of earth excavation and finite void growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurtin M.E., Sternberg E.: On the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 11, 291–356 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bernstein B., Kearsley E.A., Zapas L.J.: A study of stress relaxation with finite strains. Trans. Soc. Rheol. 7, 391–409 (1963)

    Article  Google Scholar 

  3. McGuirt C.W., Lianis G.: Constitutive equations for viscoelastic solids under finite uniaxial and biaxial deformations. Trans. Soc. Rheol. 14, 117–134 (1970)

    Article  Google Scholar 

  4. Pipkin A.C., Rogers T.G.: A nonlinear integral representation for viscoelastic behavior. J. Mech. Phys. Solids 16, 59–72 (1968)

    Article  MATH  Google Scholar 

  5. Schapery R.A.: On the characterization of non-linear viscoelastic materials. Polym. Eng. Sci. 9, 295–310 (1969)

    Article  Google Scholar 

  6. Flügge W.: Viscoelasticity, 2nd edn. Springer, New York (1975)

    MATH  Google Scholar 

  7. Findley W.N., Lai J.S., Onaran K.: Creep and relaxation of non-linear viscoelastic materials. North-Holland, Amsterdam (1976)

    Google Scholar 

  8. Weng G.J.: A physically consistent method for the prediction of creep behavior of metals. J. Appl. Mech. 46, 800–804 (1979)

    MATH  Google Scholar 

  9. Weng G.J.: Self-consistent determination of time-dependent behavior of metals. J. Appl. Mech. 48, 41–46 (1981)

    Article  MATH  Google Scholar 

  10. Weng G.J.: A self-consistent scheme for the relaxation behavior of metals. J. Appl. Mech. 48, 779–784 (1981)

    Article  Google Scholar 

  11. Weng G.J.: A unified, self-consistent theory for the plastic-creep deformation of metals. J. Appl. Mech. 49, 728–734 (1982)

    Article  MATH  Google Scholar 

  12. Weng G.J.: Cyclic stress relaxation of polycrystalline metals at elevated temperature. Int. J. Solids Struct. 19, 541–551 (1983)

    Article  MATH  Google Scholar 

  13. Weng G.J.: Tensile creep acceleration by superimposed cyclic torsional strain in polycrystalline metals. Mater. Sci. Eng. 57, 127–133 (1983)

    Article  Google Scholar 

  14. Christensen R.M.: A nonlinear theory of viscoelasticity for application to Elastomers. J. Appl. Mech. 47, 762–768 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Christensen R.M.: Theory of Viscoelasticity: an introduction, 2nd edn. Academic Press, New York (1982)

    Google Scholar 

  16. Graham G.A.C.: The correspondence principle of linear viscoelasticity theory for mixed boundary value problems involving time-dependent boundary regions. Q. Appl. Math. 26, 167–174 (1968)

    MATH  Google Scholar 

  17. Graham G.A.C., Sabin G.C.W.: The correspondence principle of linear viscoelasticity for problems that involve time-dependent regions. Int. J. Eng. Sci. 11, 123–140 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  18. Graham G.A.C.: The solution of mixed boundary value problems that involve time-dependent boundary regions for viscoelastic materials with one relaxation function. Acta Mech. 8, 188–204 (1969)

    Article  MATH  Google Scholar 

  19. Lee E.H.: Stress analysis in viscoelastic bodies. Q. Appl. Math. 13, 183 (1955)

    MATH  Google Scholar 

  20. Barrett K.E., Gotts A.C.: 2-D finite element analysis of a compressible dynamic viscoelastic cylinder using FFT. Commun. Numer. Meth. Eng. 18, 729–742 (2002)

    Article  MATH  Google Scholar 

  21. Mana A.I., Clough G.W.: Prediction of movements for braced cuts in clay. J. Geotech. Eng. Div. ASCE 107, 759–778 (1981)

    Google Scholar 

  22. Rashba E.I.: Stress determination in bulks due to own weight taking into account the construction sequence. Proc. Inst. Struct. Mech. 57(3), 529–536 (1953)

    Google Scholar 

  23. Brown C.B., Green D.R., Pawsey S.: Flexible culverts under light fills. J. Struct. Div. ASCE 94(4), 905–917 (1968)

    Google Scholar 

  24. Christion P.P., Chuntranuluk S.: Retaining wall under action of accreted tack fill. J. Geotech. Engry. Div. ASCE 100(4), 471–476 (1974)

    Google Scholar 

  25. Brown C.B., Evans K.J., Lachapelle E.R.: Slab avalanching and state of stress in fallen snow. J. Geophys. Res. 77(24), 4570–4580 (1972)

    Article  Google Scholar 

  26. Namov, V.E.: Mechanics of growing deformable solids—a review. J. Eng. Mech. (2), 207–210 (1994)

  27. Shamina V.A.: Formulation of the linear axisymmetric problem for deformable solids in terms of stresses, Vestnik Sankt-peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya 1, 145–148 (2001)

    Google Scholar 

  28. Georgiyevskii D.V., Pobedrya B.Y.: The number of independent compatibility equations in the mechanics of deformable solids. J. Appl. Math. Mech. 68(6), 941–946 (2004)

    Article  MathSciNet  Google Scholar 

  29. Cao Z.Y.: Viscoelastic solution of time-varying solid mechanics. Acta Mech. Sin. 32(4), 497–501 (2000)

    Google Scholar 

  30. Liang G.: The viscoelastic time-varying analytical solutions of up-growing rectangular plane considering the gravity. J. Shanghai Maritime Univ. 21(4), 73–79 (2000)

    Google Scholar 

  31. Wang H.N., Cao Z.Y.: Time-varying analytics study of random expanding hole in plane viscoelasticity. Acta Mech. Solida Sin. 27(3), 319–323 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. N. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H.N., Nie, G.H. Analytical expressions for stress and displacement fields in viscoelastic axisymmetric plane problem involving time-dependent boundary regions. Acta Mech 210, 315–330 (2010). https://doi.org/10.1007/s00707-009-0208-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0208-x

Keywords

Navigation