Skip to main content
Log in

Dynamic fracture with meshfree enriched XFEM

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The enrichment of the extended finite element method (XFEM) by meshfree approximations is studied. The XFEM allows for modeling arbitrary discontinuities, but with low order elements the accuracy often needs improvement. Here, the meshfree approximation is used as an enrichment in a cluster of nodes about the crack tip to improve accuracy. Several numerical examples show that this leads to more accuracy for stress intensity factors computations, and to the capability to capture the branching point of a propagating crack from the stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  2. Belytschko T., Krongauz Y., Dolbow J., Gerlach C.: On the completeness of meshfree particle methods. Int. J. Numer. Methods Eng. 43, 785–819 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fleming M., Chu Y.A., Moran B., Belytschko T.: Enriched element-free Galerkin methods for crack tip fields. Int. J. Numer. Methods Eng. 40, 1483–1504 (1997)

    Article  MathSciNet  Google Scholar 

  4. Nguyen V.P., Rabczuk T., Bordas S., Duflot M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79, 763–813 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Moës N., Dolbow J., Belytschko T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  6. Dolbow J., Moës N., Belytschko T.: Discontinuous enrichment in finite elements with a partition of unity method. Int. J. Numer. Methods Eng. 36, 235–260 (2000)

    MATH  Google Scholar 

  7. Melenk J.M., Babuška I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996)

    Article  MATH  Google Scholar 

  8. Belytschko T., Moës N., Usui S., Parimi C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50, 993–1013 (2001)

    Article  MATH  Google Scholar 

  9. Moës N., Belytschko T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (2002)

    Article  Google Scholar 

  10. Moës N., Gravouil A., Belytschko T.: Non-planar 3D crack growth by the extended finite element and level sets. Part I : Mechanical model. Int. J. Numer. Methods Eng. 53, 2549–2568 (2002)

    Article  MATH  Google Scholar 

  11. Duan Q., Song J.H., Menouillard T., Belytschko T.: Element-local level set method for three-dimensional dynamic crack growth. Int. J. Numer. Methods Eng. 80, 1520–1543 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wells G.N., Sluys L.J., De Borst R.: Simulating the propagation of displacement discontinuities in a regularized strain-softening medium. Int. J. Numer. Methods Eng. 53, 1235–1256 (2002)

    Article  Google Scholar 

  13. Réthoré J., Gravouil A., Combescure A.: A stable numerical scheme for the finite element simulation of dynamic crack propagation with remeshing. Comput. Methods Appl. Mech. Eng. 193, 4493–4510 (2004)

    Article  MATH  Google Scholar 

  14. Belytschko T., Chen H., Xu J., Zi G.: Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Methods Eng. 58, 1873–1905 (2003)

    Article  MATH  Google Scholar 

  15. Belytschko T., Chen H.: Singular enrichment finite element method for elastodynamic crack propagation. Int. J. Comput. Methods 1, 1–15 (2004)

    Article  MATH  Google Scholar 

  16. Menouillard, T., Song, J.H., Duan, Q., Belytschko, T.: Time dependent crack tip enrichment for dynamic crack propagation. Int. J. Fract. doi:10.1007/s10704-009-9405-9 (2009)

  17. Menouillard T., Belytschko T.: Correction Force for releasing crack tip element with XFEM and only discontinuous enrichment. Eur. J. Comput. Mech. 18, 465–483 (2009)

    Google Scholar 

  18. Menouillard, T., Belytschko, T.: Improvement with smoothly discontinuous enrichment in XFEM for dynamic crack propagation. Int. J. Numer. Methods Eng. (2009, accepted)

  19. Xiao Q.Z., Karihaloo B.L.: Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery. Int. J. Numer. Methods Eng. 66, 1378–1410 (2006)

    Article  MATH  Google Scholar 

  20. Bordas S., Duflot M.: Derivative recovery and a posteriori error estimate for extended finite elements. Comput. Methods Appl. Mech. Eng. 196, 3381–3399 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Duflot M., Bordas S.: A posteriori error estimation for extended finite elements by an extended global recovery. Int. J. Numer. Methods Eng. 76, 1123–1138 (2008)

    Article  MathSciNet  Google Scholar 

  22. Ródenas J.J., González-Estrada O.A., Tarancón J.E., Fuenmayor F.J., Valenciana G.: A recovery type error estimator for the extended finite element method based on singular+ smooth stress field splitting. Int. J. Numer. Methods Eng. 76, 545–571 (2008)

    Article  Google Scholar 

  23. Liu W.K., Uras R.A., Chen Y.: Enrichment of the finite element method with the reproducing kernel particle method. Trans. ASME J. Appl. Mech. 64, 861–870 (1997)

    Article  MATH  Google Scholar 

  24. Huerta A., Fernandez-Mendez S.: Enrichment and coupling of the finite element and meshless methods. Int. J. Numer. Methods Eng. 48, 1615–1636 (2000)

    Article  MATH  Google Scholar 

  25. Fernandez-Mendez S., Diez P., Huerta A.: Convergence of finite elements enriched with mesh-less methods. Numer. Math. 96, 43–59 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rabczuk T., Xiao S.P., Sauer M.: Coupling of meshfree methods with finite elements: basic concepts and test results. Commun. Numer. Methods Eng. 22, 1031–1065 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gu Y.T., Zhang L.C.: Coupling of the meshfree and finite element methods for determination of the crack tip fields. Eng. Fract. Mech. 75, 986–1004 (2008)

    Article  Google Scholar 

  28. Belytschko T., Liu W.K., Moran B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)

    MATH  Google Scholar 

  29. Cox J.V.: An extended finite element method with analytical enrichment for cohesive crack modeling. Int. J. Numer. Methods Eng. 78, 48–83 (2009)

    Article  MATH  Google Scholar 

  30. Réthoré J., Gravouil A., Combescure A.: An energy-conserving scheme for dynamic crack growth using the extended finite element method. Int. J. Numer. Methods Eng. 63, 631–659 (2005)

    Article  MATH  Google Scholar 

  31. Menouillard T., Réthoré J., Moës N., Combescure A., Bung H.: Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation. Int. J. Numer. Methods Eng. 74, 447–474 (2008)

    Article  MATH  Google Scholar 

  32. Menouillard T., Réthoré J., Combescure A., Bung H.: Efficient explicit time stepping for the eXtended Finite Element Method (X-FEM). Int. J. Numer. Methods Eng. 68, 911–939 (2006)

    Article  MATH  Google Scholar 

  33. Elguedj T., Gravouil A., Maigre H.: An explicit dynamics extended finite element method. Part 1: mass lumping for arbitrary enrichment functions. Comput. Methods. Appl. Mech. Eng. 198, 2297–2317 (2009)

    Article  Google Scholar 

  34. Barenblatt G.I.: The mathematical theory of equilibrium cracks formed in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  MathSciNet  Google Scholar 

  35. Hillerborg A., Modeer M., Petersson P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concrete Res 6, 773–782 (1976)

    Article  Google Scholar 

  36. Song J.H., Areias P.M.A., Belytschko T.: A method for dynamic crack and shear band propagation with phantom nodes. Int. J. Numer. Methods Eng. 67, 868–893 (2006)

    Article  MATH  Google Scholar 

  37. Rabczuk T., Song J.H., Belytschko T.: Simulations of instability in dynamic fracture by the cracking particles method. Eng. Fract. Mech. 76, 730–741 (2009)

    Article  Google Scholar 

  38. Rice J.R.: A path independent integral and the approximate analysis of strain concentration by cracks and notches. J. Appl. Mech. (Trans. ASME) 35, 379–386 (1968)

    Google Scholar 

  39. Bui H.D.: Mecanique de la rupture fragile. Masson, Paris (1978)

    Google Scholar 

  40. Freund L.B.: Dynamic Fracture Mechanics. Cambridge University Press, London (1990)

    Book  MATH  Google Scholar 

  41. Freund L.B.: Crack propagation in an elastic solid subjected to general loading. Pt. 1. Constant rate of extension. J. Mech. Phys. Solids 20, 129–140 (1972)

    Article  Google Scholar 

  42. Freund L.B., Douglas A.S.: Influence of inertia on elastic-plastic antiplane-shear crack growth. J. Mech. Phys. Solids 30, 59–74 (1982)

    Article  MATH  Google Scholar 

  43. Rosakis A.J., Freund L.B.: Optical measurement of the plastic strain concentration at a crack tip in a ductile steel plate. J. Eng. Mater. Technol. (Trans. ASME) 104, 115–120 (1982)

    Article  Google Scholar 

  44. Ravi-Chandar K.: Dynamic Fracture. Elsevier, Amsterdam (2004)

    Google Scholar 

  45. Lee Y.J., Freund L.B.: Fracture initiation due to asymmetric impact loading of an edge cracked plate. J. Appl. Mech. 57, 104 (1990)

    Article  Google Scholar 

  46. Belytschko T., Tabbara M.: Dynamic fracture using element-free Galerkin methods. Int. J. Numer. Methods Eng. 39, 923–938 (1996)

    Article  MATH  Google Scholar 

  47. Yoffe E.H.: The moving Griffith crack. Philos. Mag. 42, 739–750 (1951)

    MATH  MathSciNet  Google Scholar 

  48. Schardin H. et al.: Velocity effects in fracture. In: Averbach, B. (eds) Fracture, pp. 297–330. Wiley, New York (1959)

    Google Scholar 

  49. Döll W.: Investigations of the crack branching energy. Int. J. Fract. 11, 184–186 (1975)

    Article  Google Scholar 

  50. Kobayashi A.S., Wade B.G., Bradley W.B.: Fracture dynamics of Homalite-100. In: Kansch, H.H., Haseele, J.A., Jaffee, R.L. (eds) Deformation and Fracture of High Polymers, pp. 487–500. Plenum Press, New York (1973)

    Google Scholar 

  51. Kobayashi, A.S.: Photoelastic Techniques. Exp. Tech. Fract. Mech., 126–145 (1973)

  52. Sumi Y., Nemat-Nasser S., Keer L.M.: On crack branching and curving in a finite body. Int. J. Fract. 21, 67–79 (1983)

    Article  Google Scholar 

  53. Ramulu M., Kobayashi A.S.: Mechanics of crack curving and branching dynamic fracture analysis. Int. J. Fract. 27, 187–201 (1985)

    Article  Google Scholar 

  54. Ravi-Chandar K.: Dynamic fracture of nominally brittle materials. Int. J. Fract. 90, 83–102 (1998)

    Article  Google Scholar 

  55. Xu X.P., Needleman A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42, 1397–1434 (1994)

    Article  MATH  Google Scholar 

  56. Seelig T., Gross D.: On the interaction and branching of fast running cracks—a numerical investigation. J. Mech. Phys. Solids 47, 935–952 (1999)

    Article  MATH  Google Scholar 

  57. Linder C., Armero F.: Finite elements with embedded branching. Finite Elem. Anal. Des. 45, 280–293 (2009)

    Article  MathSciNet  Google Scholar 

  58. Song J.H., Belytschko T.: Cracking node method for dynamic fracture with finite elements. Int. J. Numer. Methods Eng. 77, 360–385 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Menouillard.

Additional information

The authors gratefully acknowledge the support of the Army Research Office through Grant W911NF-08-1-0212 and the Office of Naval Research through Grant N00014-08-1-1191.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menouillard, T., Belytschko, T. Dynamic fracture with meshfree enriched XFEM. Acta Mech 213, 53–69 (2010). https://doi.org/10.1007/s00707-009-0275-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0275-z

Keywords

Navigation