Skip to main content
Log in

Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Part I: theoretical formulations

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The current work suggests mathematical models for the vibration of double-walled carbon nanotubes (DWCNTs) subjected to a moving nanoparticle by using nonlocal classical and shear deformable beam theories. The van der Waals interaction forces between atoms of the innermost and outermost tubes are modeled by an elastic layer. The equations of motion are derived for the nonlocal double body Euler–Bernoulli, Timoshenko and higher-order beams connected by a flexible layer under excitation of a moving nanoparticle. Analytical solutions of the problem are provided for the aforementioned nonlocal beam models with simply supported boundary conditions. The dynamical deflections and nonlocal bending moments of the innermost and outermost tubes are then obtained during the courses of excitation and free vibration. Finally, the critical velocities of the moving nanoparticle associated with the nonlocal beam theories are expressed in terms of small-scale effect parameter, geometry, and material properties of DWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coleman J.N., Khan U., Blau W.J., Gunko Y.K.: Small but strong: a review of the mechanical properties of carbon nanotubepolymer composites. Carbon 44, 1624–1652 (2006)

    Article  Google Scholar 

  2. Gibson R.F., Ayorinde E.O., Wen Y.F.: Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67, 1–28 (2007)

    Article  Google Scholar 

  3. Hummer G., Rasaiah J.C., Noworyta J.P.: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001)

    Article  Google Scholar 

  4. Supple S., Quirke N.: Rapid imbibition of fluids in carbon nanotubes. Phys. Rev. Lett. 90, 214501 (2003)

    Article  Google Scholar 

  5. Majumder M., Chopra N., Andrews R., Hinds B.J.: Nanoscale hydrodynamics enhanced flow in carbon nanotubes. Nature 438, 444 (2005)

    Google Scholar 

  6. Regan, B.C., Aloni, S., Huard, B., Fennimore, A., Ritchie, R.O., Zettl, A.: Nanowicks: nanotubes as tracks for mass transfer. In: Kuzmany, H., Fink, J., Mehring, M., Roth, S. (eds.) Molecular Nanostructures. AIP Conference Proceedings, vol. 685, pp. 612–615 (2003)

  7. Regan B.C., Aloni S., Ritchie R.O., Dahmen U., Zettl A.: Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924–927 (2004)

    Article  Google Scholar 

  8. Babu S., Ndungu P., Bradley J.C., Rossi M.P., Gogotsi Y.: Guiding water into carbon nanopipes with the aid of bipolar electrochemistry. Microfluid. Nanofluid. 1, 284–288 (2005)

    Article  Google Scholar 

  9. Gogotsi Y.: In situ multiphase fluid experiments in hydrothermal CNTs. Appl. Phys. Lett. 79, 1021–1023 (2001)

    Article  Google Scholar 

  10. Waghe A., Rasaiah J.C.: Filling and emptying kinetics of carbon nanotubes in water. J. Chem. Phys. 117, 10790–10795 (2002)

    Article  Google Scholar 

  11. Tuzun R.E., Noid D.W., Sumpter B.G., Merkle R.C.: Dynamics of fluid flow inside CNTs. Nanotechnology 7, 241–246 (1996)

    Article  Google Scholar 

  12. Mao Z., Sinnott S.B.: A computational study of molecular diffusion and dynamics flow through CNTs. J. Phys. Chem. B 104, 4618–4624 (2000)

    Article  Google Scholar 

  13. Sokhan V.P., Nicholson D., Quirke N.: Fluid flow in nanopores: an examination of hydrodynamic boundary conditions. J. Chem. Phys. 115, 3878–3887 (2001)

    Article  Google Scholar 

  14. Yoon J., Ru C.Q., Mioduchowski A.: Vibration and instability of CNTs conveying fluid. Compos. Sci. Technol. 65, 1326–1336 (2005)

    Article  Google Scholar 

  15. Yoon J., Ru C.Q., Mioduchowski A.: Flow-induced flutter instability of cantilever CNTs. Int. J. Solids. Struct. 43, 3337–3349 (2006)

    Article  MATH  Google Scholar 

  16. Yana Y., He X.Q., Zhang L.X., Wang C.M.: Dynamic behavior of triple-walled carbon nanotubes conveying fluid. J. Sound. Vib. 319, 1003–1018 (2009)

    Article  Google Scholar 

  17. Ru C.Q.: Effect of van der Waals forces on axial buckling of a double-wall carbon nanotube. J. Appl. Phys. 87, 7227–7231 (2000)

    Article  Google Scholar 

  18. Ru C.Q.: Axially compressed buckling of a double walled carbon nanotube embedded in an elastic medium. J. Mech. Phys. Solids 49, 1265–1279 (2001)

    Article  MATH  Google Scholar 

  19. Li C., Chou T.W.: Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63, 1517–1524 (2003)

    Article  Google Scholar 

  20. Yoon J., Ru C.Q., Mioduchowski A.: Timoshenko-beam effects on transverse wave propagation in carbon nanotubes. Composites B 35, 87–93 (2004)

    Article  Google Scholar 

  21. He X.Q., Kitipornchai S., Liew K.M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53, 303–326 (2005)

    Article  MATH  Google Scholar 

  22. Xu C.L., Wang X.: Matrix effects on the breathing modes of multiwall carbon nanotubes. Compos. Struct. 80, 73–81 (2007)

    Article  Google Scholar 

  23. Gupta S.S., Batra R.C.: Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes. Comput. Mater. Sci. 43, 715–723 (2008)

    Article  Google Scholar 

  24. Peddieson J., Buchanan G.R., McNitt R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  25. Sudak L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)

    Article  Google Scholar 

  26. Wang Q., Liew K.M.: Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A 363, 236–242 (2007)

    Article  Google Scholar 

  27. Ece M.C., Aydogdu M.: Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta. Mech. 190, 185–195 (2007)

    Article  MATH  Google Scholar 

  28. Schoen P.A.E., Walther J.H., Arcidiacono S., Poulikakos D., Koumoutsakos P.: Nanoparticle traffic on helical tracks: thermophoretic mass transport through carbon nanotubes. Nano. Lett. 6, 1910–1917 (2006)

    Article  Google Scholar 

  29. Schoen P.A.E., Walther J.H., Poulikakos D., Koumoutsakos P.: Phonon assisted thermophoretic motion of gold nanoparticles inside carbon nanotubes. Appl. Phys. Lett. 90, 253116 (2007)

    Article  Google Scholar 

  30. Kiani K., Mehri B.: Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. J. Sound. Vib. 329, 2241–2264 (2010)

    Article  Google Scholar 

  31. Lennard-Jones J.E.: The determination of molecular fields: from the variation of the viscosity of a gas with temperature. Proc. Roy. Soc. Lond. Ser. A 106, 441–462 (1924)

    Article  Google Scholar 

  32. Girifalco L.A., Lad R.A.: Energy of cohesion, compressibility and the potential energy function of graphite system. J. Chem. Phys. 25, 693–697 (1956)

    Article  Google Scholar 

  33. Saito R., Dresselhaus G., Dresselhaus M.S.: Physical Properties of Carbon Nanotubes. Imperial College, London (1998)

    Book  Google Scholar 

  34. Frýba L.: Vibration of Solids and Structures Under Moving Loads. Thomas Telford, London (1999)

    Book  Google Scholar 

  35. Eringen A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  36. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  37. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  38. Timoshenko S.: Vibration Problems in Engineering. Van Nostrand, New Jersey (1955)

    Google Scholar 

  39. Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables. Dover, New York (1972)

    MATH  Google Scholar 

  40. Reddy J.N.: Mechanics of Laminated Composite Plates. CRC press, Florida (1997)

    MATH  Google Scholar 

  41. Kiani K., Nikkhoo A., Mehri B.: Prediction capabilities of classical and shear deformable beam models excited by a moving mass. J. Sound. Vib. 320, 632–648 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Kiani.

Additional information

This article is lovingly dedicated to my father and mother, Amrullah Kiani and Kobra Ahmadi, whose love and encouragements I feel every day of my life.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiani, K. Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Part I: theoretical formulations. Acta Mech 216, 165–195 (2011). https://doi.org/10.1007/s00707-010-0362-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0362-1

Keywords

Navigation