Skip to main content
Log in

Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper deals with the linear instability analysis of the spherical Couette flow of an electrically conducting fluid in the presence of an axial magnetic field. The numerical investigations are performed for different ratios, η = 0.5 and η = 0.6, and compared with Hollerbach’s work for η = 0.33 (Hollerbach in Proc R Soc 465:2003, 2009). The corresponding instability diagrams, i.e., the critical values of the Reynolds number Re, the wave number, and the frequency on the Hartmann number Ha, are presented and accompanied by simulation of the transition between three-dimensional flow states of different symmetries. The characteristic subdivision of the linear stability curves into anti-symmetric modes, which is responsible for the instability at small Ha, and symmetric modes occurring at higher Ha is found for larger η, too. However, the extension of the stability corridor between the anti-symmetric and the symmetric modes increases nonlinearly with η. This offers the possibility to stabilize the basic flow up to high Re by appropriately increasing Ha.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hollerbach R.: Magnetohydrodynamic Ekman and Stewartson layer in a rotating sperical shell. Proc. R. Soc. Lond. A 444, 333–346 (1994)

    Article  MATH  Google Scholar 

  2. Dormy E., Cardin P., Jault D.: MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet. Sci. Lett. 160, 15–30 (1998)

    Article  Google Scholar 

  3. Hollerbach R.: A spectral solution of the magneto-convection equations in spherical geometry. Int. J. Numer. Meth. Fluids 32, 773–797 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hollerbach R.: Magnetohydrodynamic flows in spherical shells. In: Egbers, C., Pfister, G. (eds) Physics of Rotating Fluids, pp. 295–316. Springer, Berlin (2000a)

    Chapter  Google Scholar 

  5. Dormy E., Jault D., Soward A.M.: A super-rotating shear layer in magnetohydrodynamic spherical Couette flow. J. Fluid Mech. 452, 263–291 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hollerbach R., Skinner S.: Instabilities of magnetically induced shear layers and jets. Proc. R. Soc. Lond. A 457, 785–802 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hollerbach R., Junk M., Egbers C.: Non-axisymmetric instabilities in basic state spherical Couette flow. Fluid Dyn. Res. 38, 257 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hollerbach R., Canet E., Fournier A.: Spherical Couette flow in a dipolar magnetic field. Eur. J. Mech. B 26, 729–737 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hollerbach R.: Non-axisymmetric instabilities in magnetic spherical Couette flow. Proc. R. Soc. Lond. A 465, 2003–2013 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wei X., Hollerbach R.: Magnetic spherical Couette flow in linear combinations of axial and dipolar fields. Acta Mech. 215, 1–8 (2010)

    Article  MATH  Google Scholar 

  11. Bühler L.: On the origin of super-rotating layers in magnetohydrodynamic flows. Theor. Comput. Fluid Dyn. 23, 491–507 (2009)

    Article  Google Scholar 

  12. Sisan D.R., Mujica N., Tillotson W.A., Huang Y.-M., Dorland W., Hassam A.B., Antonsen T.M., Lathrop D.P.: Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett. 93(11), 114502 (2004)

    Article  Google Scholar 

  13. Nataf H.-C., Alboussiere T., Brito D., Cardin P., Gagniere N., Jault D., Schmitt D.: Rapidly rotating spherical Couette flow in a dipolar magnetic field: an experimental study of the mean axisymmetric flow. Phys. Earth Planet. Interiors 170, 60–72 (2008)

    Article  Google Scholar 

  14. Stefani F., Gundrum T., Gerbeth G., Rüdiger G., Schultz M., Szklarski J., Hollerbach R.: Experimental evidence for magnetorotational instability in a Taylor-Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184502 (2006)

    Article  Google Scholar 

  15. Starchenko S.V.: Magnetohydrodynamic flow between insulating shells rotating in strong potential field. Phys. Fluids 10, 2412–2420 (1998)

    Article  Google Scholar 

  16. Thess A., Nitschke K.: On Bénard-Marangoni instability in the presence of a magnetic field. Phys. Fluids 7, 1176–1178 (1995)

    Article  MATH  Google Scholar 

  17. Gelfgat A.Y., Bar-Yoseph P.Z.: The effect of an external magnetic field on oscillatory instability of convective flows in a rectangular cavity. Phys. Fluids 13, 8–22692278 (2001)

    Google Scholar 

  18. Grants I., Pedchenko A., Gerbeth G.: Experimental study of the suppression of Rayleigh-Bénard instability in a cylinder by combined rotating and static magnetic fields. Phys. Fluids 18, 124104 (2006)

    Article  Google Scholar 

  19. Boyd J.P.: Chebyshev and Fourier Spectral Methods. Dover, New York (2001)

    MATH  Google Scholar 

  20. Davidson P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  21. Junk M.: Numerische Untersuchung der Stabilität der Strömung im weiten Kugelspalt. Cuvillier, Gottingen (2005)

    Google Scholar 

  22. Junk, M., Egbers, C.: Isothermal spherical Couette flows Physics of Rotating Fluids. In: Proceedings of 11th International Taylor-Couette Workshop, July 20–23, 1999, Bremen, Germany, Lecture Notes in Physics 549. Springer, Berlin (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Travnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Travnikov, V., Eckert, K. & Odenbach, S. Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths. Acta Mech 219, 255–268 (2011). https://doi.org/10.1007/s00707-011-0452-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0452-8

Keywords

Navigation