Skip to main content
Log in

Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The paper presents an analysis of functionally graded material doubly curved panels with rectangular planform under the action of thermal and mechanical loads. Based on the first-order shear deformation theory of modified Sanders assumptions, five coupled partially differential equations (PDEs) are established as equations of motion. Each thermo-mechanical property of the shell follows the power law distribution across the thickness, except Poisson’s ratio, which is kept constant through the panel. Assuming that four edges of the shell-panel are simply supported, a Navier-based solution is adopted to reduce the PDEs into time-dependent ODEs. Applying the Laplace transformation, the equations of motion are transformed into the Laplace domain. With the aid of analytical Laplace inverse method, solutions of stresses, strains, and displacements are obtained in time domain and expressed in explicit phrases. Dynamic, free vibration, and thermo-mechanical bending analysis of the panel is carried out for various geometries. Obtained results are validated with the well-known available data reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47, 663–684 (2000)

    Article  MATH  Google Scholar 

  2. Praveen G.N., Reddy J.N.: Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. Int. J. Solids Struct. 35, 4457–4476 (1998)

    Article  MATH  Google Scholar 

  3. Vel S.S., Batra R.C.: Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA J. 40, 1421–1433 (2002)

    Article  Google Scholar 

  4. Qian L.F., Batra R.C., Chen L.M.: Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local PetrovGalerkin method. Compos. Part B Eng. 35, 685–697 (2004)

    Article  Google Scholar 

  5. Zhao X., Lee Y.Y., Liew K.M.: Thermoelastic and vibration analysis of functionally graded cylindrical shells. Int. J. Mech. Sci. 51, 694–707 (2009)

    Article  Google Scholar 

  6. Zhao X., Liew K.M.: Geometrically nonlinear analysis of functionally graded shells. Int. J. Mech. Sci. 51, 131–144 (2009)

    Article  Google Scholar 

  7. Alijani F., Amabili M., Karagiozis K., Bakhtiari-Nejad F.: Nonlinear vibrations of functionally graded doubly curved shallow shells. J. Sound Vib. 330, 1432–1454 (2011)

    Article  Google Scholar 

  8. Alijani F., Amabili M., Bakhtiari-Nejad F.: Thermal effects on nonlinear vibrations of functionally graded doubly curved shells using higher order shear deformation theory. Compos. Struct. 93, 2541–2553 (2011)

    Article  Google Scholar 

  9. Pradyumna S., Bandyopadhyay J.N.: Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation. J. Sound Vib. 318, 176–192 (2008)

    Article  Google Scholar 

  10. Pradyumna S., Nanda N., Bandyopadhyay J.N.: Geometrically nonlinear transient analysis of functionally graded shell panels using a higher-order finite element formulation. J. Mech. Eng. Res. 2, 39–51 (2010)

    Google Scholar 

  11. Yang J., Shen H.S.: Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels. J. Sound Vib. 261, 871–893 (2003)

    Article  Google Scholar 

  12. Farid M., Zahedinejad P., Malekzadeh P.: Three-dimensional temperature dependent free vibration analysis of functionally graded material curved panels resting on two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method. Mater. Des. 31, 2–13 (2010)

    Article  Google Scholar 

  13. Javanbakht M., Shakeri M., Sadeghi S.N., Daneshmehr A.R.: The analysis of functionally graded shallow and non-shallow shell panels with piezoelectric layers under dynamic load and electrostatic excitation based on elasticity. Eur. J. Mech. A Solids 30, 983–991 (2011)

    Article  Google Scholar 

  14. Kiani Y., Bagherizadeh E., Eslami M.R.: Thermal buckling of clamped thin rectangular FGM plates resting on Pasternak elastic foundation (Three approximate analytical solutions). ZAMM 91, 581–593 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Akbarzadeh A.H., Hosseini Zad S.K., Eslami M.R., Sadighi M.: Mechanical behaviour of functionally graded plates under static and dynamic loading. Proc. Instit. Mech. Eng. Part C J. Mech. Eng. Sci. 225, 326–333 (2011)

    Google Scholar 

  16. Akbarzadeh A.H., Abbasi M., Hosseini Zad S.K., Eslami M.R.: Dynamic analysis of functionally graded plates using the hybrid Fourier-Laplace transform under thermomechanical loading. Meccanica. 46, 1373–1392 (2011)

    Article  MathSciNet  Google Scholar 

  17. Qatu M.S.: Vibration of Laminated Shells and Plates. Academic Press, London (2004)

    Google Scholar 

  18. Reddy J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton, FL (2004)

    MATH  Google Scholar 

  19. Reddy J.N.: Exact solutions of moderately thick laminated shells. J. Eng. Mech. 110, 794–809 (1984)

    Article  Google Scholar 

  20. Chandrashekhara K.: Free vibrations of anisotropic laminated doubly curved shells. Comput. Struct. 33, 435–440 (1989)

    Article  MATH  Google Scholar 

  21. Amabili M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  22. Woo J., Meguid S.A., Stranart J.C., Liew K.M.: Thermomechanical postbuckling analysis of moderately thick functionally graded plates and shallow shells. Int. J. Mech. Sci. 47, 1147–1171 (2005)

    Article  MATH  Google Scholar 

  23. Lee S.J., Reddy J.N.: Vibration suppression of laminated shell structures investigated using higher order shear deformation theory. Smart Mater. Struct. 13, 1176–1194 (2004)

    Article  Google Scholar 

  24. Nguyen-Xuan H., Tran L.V., Nguyen-Thoi T., Vu-Do H.C.: Analysis of functionally graded plates using an edge-based smoothed finite element method. Compos. Struct. 93, 3019–3039 (2011)

    Article  Google Scholar 

  25. Chern Y.C., Chao C.C.: Comparison of natural frequencies of laminates by 3-D theory—part II :curved panels. J. Sound Vib. 230, 1009–1030 (2000)

    Article  Google Scholar 

  26. Khare R.K., Kant T., Garg A.K.: Free vibration of composite and sandwich laminates with a higher-order facet shell element. Compos. Struct. 65, 405–418 (2004)

    Article  Google Scholar 

  27. Fan S.C., Luah M.H.: Free vibration analysis of arbitrary thin shell structures by using spline finite element. J. Sound Vib. 179, 763–776 (1995)

    Article  Google Scholar 

  28. Hosseini-Hashemi Sh., Fadaee M.: On the free vibration of moderately thick spherical shell panel—A new exact closed—form procedure. J. Sound Vib. 330, 4352–4367 (2011)

    Article  Google Scholar 

  29. Shakeri M., Mirzaeifar R.: Static and Dynamic Analysis of Thick Functionally Graded Plates with Piezoelectric Layers Using Layerwise Finite Element Model. Mech. Adv. Mater. Struct. 16, 561–575 (2009)

    Article  Google Scholar 

  30. Ferreira A.J.M., Batra R.C., Roque C.M.C., Qian L.F., Martins P.A.L.S.: Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Compos. Struct. 69, 449–457 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Eslami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiani, Y., Shakeri, M. & Eslami, M.R. Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation. Acta Mech 223, 1199–1218 (2012). https://doi.org/10.1007/s00707-012-0629-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0629-9

Keywords

Navigation