Skip to main content
Log in

Structural health monitoring of cylindrical structures using guided ultrasonic waves

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The research field of structural health monitoring (SHM) in the realm of civil engineering has emerged rapidly. SHM concepts are based on integrated sensors and actuators to evaluate the structural state. Beside common structural response methods and other nondestructive testing techniques, wave-based ultrasonic techniques are widely used especially because of their flexibility. Monitoring cable structures such as overhead transmission lines or stay cables in suspension bridges is one objective of those wave-based methods. These structures are subject to aging, corrosion and other static and dynamic loads (e.g., wind, temperature). The cylindrical structures act as waveguides whereby monitoring of large distances with a single ultrasonic transducer is possible. However, the wave propagation is multimodal and dispersive, which complicates analysis of the wave motion and development of monitoring applications. This work addresses several aspects of the propagation of guided waves in cylinders, especially the analysis of reflection and transmission at discontinuities using finite element and boundary element methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach J.: Quantitative nondestructive evaluation. Int. J. Solids Struct. 37(1–2), 13–27 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azevedo F., Cescon T.: Failure analysis of aluminum cable steel reinforced (ACSR) conductor of the transmission line crossing the Parana river. Eng. Fail. Anal. 9(6), 645–664 (2002)

    Article  Google Scholar 

  3. Chang, F.K. (eds): Structural health monitoring: current status and perspectives. Technomic (1997)

  4. Cho Y., Rose J.L.: A boundary element solution for a mode conversion study on the edge reflection of Lamb waves. J. Acoust. Soc. Am. 99(4), 2097–2109 (1996)

    Article  Google Scholar 

  5. DIN EN 12385: Steel wire ropes—safety—. Deutsches Institut für Normung e.V. (2003)

  6. Gaul L., Fiedler C.: Methode der Randelemente in Statik und Dynamik. Vieweg, New York (1997)

    MATH  Google Scholar 

  7. Gaul L., Kögl M., Wagner M.: Boundary element methods for engineers and scientists. Springer, Berlin (2003)

    MATH  Google Scholar 

  8. Gaul, L., Bischoff, S., Sprenger, H., Haag, T.: Numerical und experimental investigation of wave propagation in rod-systems with cracks. Eng. Fract. Mech. 77, 3532–3540 (2010)

    Google Scholar 

  9. Graff K.F.: Wave motion in elastic solids. Dover Publications, New York (1991)

    Google Scholar 

  10. Hayashi T., Song W., Rose J.: Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41(3), 175–183 (2003)

    Article  Google Scholar 

  11. Kerber, F., Sprenger, H., Niethammer, M., Luangvilai, K., Jacobs, L.J.: Attenuation analysis of Lamb waves using the chirplet transform. EURASIP J. Adv. Signal Process. 2010, 1–7 (2010)

  12. Kley M., Valle C., Jacobs L.J., Qu J., Jarzynski J.: Development of dispersion curves for two-layered cylinders using laser ultrasonics. J. Acoust. Soc. Am. 106(2), 582–588 (1999)

    Article  Google Scholar 

  13. Kuttig H., Niethammer M., Hurlebaus S., Jacobs L.J.: Model-based analysis of dispersion curves using chirplets. J. Acoust. Soc. Am. 119(4), 2122–2130 (2006)

    Article  Google Scholar 

  14. Kwun H., Burkhardt G.L.: Experimental investigation of dynamics of transverse-impulse wave propagation and dispersion in steel wire ropes. J. Acoust. Soc. Am. 92(4), 1973–1980 (1992)

    Article  Google Scholar 

  15. Lachat J.C., Watson J.O.: Effective numerical treatment of boundary intergal equations: a formulation for three-dimensional elastostatics. Int. J. Numer. Method. Eng. 10(10), 991–1005 (1976)

    Article  MATH  Google Scholar 

  16. Lepidi M., Gattulli V., Vestroni F.: Static and dynamic response of elastic suspended cables with damage. Int. J. Solids Struct. 44(25–26), 8194–8212 (2007)

    Article  MATH  Google Scholar 

  17. Lowe M.J.S., Alleyne D.N., Cawley P.: The mode conversion of a guided wave by a part-circumferential notch in a pipe. J. Appl. Mech. 65(9), 649–656 (1998)

    Article  Google Scholar 

  18. Luangvilai K., Punurai W., Jacobs L.J.: Guided Lamb wave propagation in composite plate/concrete component. J. Eng. Mech. 128(12), 1337–1341 (2002)

    Article  Google Scholar 

  19. Mace B.R., Duhamel D., Brennan M.J., Hinke L.: Finite element prediction of wave motion in structural waveguides. J. Acoust. Soc. Am. 117(5), 2835–2843 (2005)

    Article  Google Scholar 

  20. Morvan B., Wilkie-Chancellier N., Duflo H., Tinel A., Duclos J.: Lamb wave reflection at the free edge of a plate. J. Acoust. Soc. Am. 113(3), 1417–1425 (2003)

    Article  Google Scholar 

  21. Oliver J.: Elastic wave dispersion in a cylindrical rod by a wide-band short-duration pulse technique. J. Acoust. Soc. Am. 29(2), 189–194 (1957)

    Article  Google Scholar 

  22. Pochhammer L.: Über die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder. J. für die reine und angew. Mathematik (Crelles J.) 81, 324–336 (1876)

    Google Scholar 

  23. Qu J., Jacobs L.J.: Cylindrical waveguides and their applications in ultrasonic evaluation. In: Kundu, T. (eds) Ultrasonic nondestructive evaluation: Engineering and biological material characterization, CRC, Boca Raton, FL (2003)

    Google Scholar 

  24. Rizzo P., Lanza Di Scalea F.: Wave propagation in multi-wire strands by wavelet-based laser ultrasound. Exp. Mech. 44(4), 407–415 (2004)

    Article  Google Scholar 

  25. Rose J.L.: A baseline and vision of ultrasonic guided wave inspection potential. J. Press. Vessel Technol. 124(3), 273–282 (2002)

    Article  Google Scholar 

  26. Siegert D., Brevet P.: Fatigue of stay cables inside end fittings: high frequencies of wind induced vibrations. Bull. Int. Organis. Study Endur. Ropes 89, 43–51 (2005)

    Google Scholar 

  27. Sprenger H., Bischoff S., Gaul L.: Reflexion und Transmission von Körperschall an Unstetigkeiten in Zylinderstrukturen. Fortschr. Akus. 36, 909–910 (2010)

    Google Scholar 

  28. Su Z., Ye L., Lu Y.: Guided Lamb waves for identification of damage in composite structures: a review. J. Sound Vib. 295(3–5), 753–780 (2006)

    Article  Google Scholar 

  29. Treyssède F.: Numerical investigation of elastic modes of propagation in helical waveguides. J. Acoust. Soc. Am. 121(6), 3398–3408 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Gaul.

Additional information

Dedicated to Professor Hans Irschik on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaul, L., Sprenger, H., Schaal, C. et al. Structural health monitoring of cylindrical structures using guided ultrasonic waves. Acta Mech 223, 1669–1680 (2012). https://doi.org/10.1007/s00707-012-0634-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0634-z

Keywords

Navigation