Skip to main content
Log in

Magnetic charged system search: a new meta-heuristic algorithm for optimization

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An improved version of the charged system search (CSS) algorithm is introduced which is called magnetic charged system search (MCSS). In the new algorithm, magnetic forces are considered in addition to electrical forces, using the Biot–Savart law. Each charged particle (CP), as a search agent, exerts magnetic forces on other CPs based on the variation of its objective function value during its last movement and its distance between other CPs. This additional force provides useful information for the optimization process and enhances the performance of the CSS algorithm. The efficiency of the MCSS is examined by application of this algorithm to well-known mathematical benchmarks and three well-studied engineering design problems. The results are compared to those of the CSS, and the improvements are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holland J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  2. Goldberg D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  3. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan (1995)

  4. Dorigo M., Maniezzo V., Colorni A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26, 29–41 (1996)

    Article  Google Scholar 

  5. Kirkpatrick S., Gelatt C., Vecchi M.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Geem Z.W., Kim J.H., Loganathan G.V.: A new heuristic optimization algorithm; harmony search. Simulation 76, 60–68 (2001)

    Article  Google Scholar 

  7. Rashedi E., Nezamabadi-pour H., Saryazdi S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)

    Article  MATH  Google Scholar 

  8. Erol O.K., Eksin I.: New optimization method: Big Bang–Big Crunch. Adv. Eng. Softw. 37, 106–111 (2006)

    Article  Google Scholar 

  9. Kaveh A., Talatahari S.: Size optimization of space trusses using Big Bang–Big Crunch algorithm. Comput. Struct. 87, 1129–1140 (2009)

    Article  Google Scholar 

  10. Kaveh A., Laknejadi K., Alinejad B.: Performance based multi-objective optimization of large steel structures. Acta. Mech. 223, 355–369 (2012)

    Article  Google Scholar 

  11. Kaveh A., Talatahari S.: Charged system search for optimal design of planar frame structures. Appl. Soft Comput. 12, 382–393 (2012)

    Article  Google Scholar 

  12. Kaveh A., Talatahari S.: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput. Struct. 87, 267–283 (2009)

    Article  Google Scholar 

  13. Kaveh A., Talatahari S.: Optimization of large-scale truss structures using modified charged system search. Int. J. Optim. Civil Eng. 1, 15–28 (2011)

    Google Scholar 

  14. Kaveh A., Talatahari S.: A novel heuristic optimization method: charged system search. Acta Mech. 213, 267–286 (2010)

    Article  MATH  Google Scholar 

  15. Halliday D., Resnick R., Walker J.: Fundamentals of Physics. Wiley, New York (2008)

    Google Scholar 

  16. Tsoulos I.G.: Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput. 203, 598–607 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hines W., Montgomery D.: Probability and Statistics in Engineering and Management Science. 3rd edn. Wiley, New York (1990)

    MATH  Google Scholar 

  18. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem Definitions and Evaluation Criteria for CEC 2005 Special Session on Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore and KanGAL Report Number 2005005 (2005)

  19. Garcia S., Molina D., Lozano M., Herrera F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms behavior: a case study on the CEC 2005 special session on real parameter optimization. J. Heuristics 15, 617–644 (2009)

    Article  MATH  Google Scholar 

  20. Belegundu, A.D.: A Study of Mathematical Programming Methods for Structural Optimization. Ph.D. Thesis, Department of Civil and Environmental Engineering, University of Iowa, Iowa (1982)

  21. Arora J.S.: Introduction to Optimum Design. McGraw-Hill, New York (1989)

    Google Scholar 

  22. Coello C.A.C.: Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 41, 113–127 (2000)

    Article  Google Scholar 

  23. Coello C.A.C., Montes E.M.: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Eng. Inform. 16, 193–203 (2002)

    Article  Google Scholar 

  24. He Q., Wang L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20, 89–99 (2007)

    Article  Google Scholar 

  25. Montes E.M., Coello C.A.C.: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int. J. Gen. Syst. 37, 443–473 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaveh A., Talatahari S.: An improved ant colony optimization for constrained engineering design problems. Eng. Comput. 27, 155–182 (2010)

    Article  Google Scholar 

  27. Ragsdell K.M., Phillips D.T.: Optimal design of a class of welded structures using geometric programming. ASME J. Eng. Ind. Ser. B 98, 1021–1025 (1976)

    Article  Google Scholar 

  28. Deb K.: Optimal design of a welded beam via genetic algorithms. AIAA J. 29, 2013–2015 (1991)

    Article  Google Scholar 

  29. Sandgren, E.: Nonlinear integer and discrete programming in mechanical design. In: Proceedings of the ASME Design Technology Conference, pp. 95–105. Kissimine (1988)

  30. Kannan B.K., Kramer S.N.: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. Trans. ASME J. Mech. Des. 116, 318–320 (1994)

    Article  Google Scholar 

  31. Deb K., Gene A.S.: A robust optimal design technique for mechanical component design. In: Dasgupta, D., Michalewicz, Z. (eds.) Evolutionary Algorithms in Engineering Applications., pp. 497–514. Springer, Berlin (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaveh, A., Motie Share, M.A. & Moslehi, M. Magnetic charged system search: a new meta-heuristic algorithm for optimization. Acta Mech 224, 85–107 (2013). https://doi.org/10.1007/s00707-012-0745-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0745-6

Keywords

Navigation