Skip to main content
Log in

A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material’s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal C.M., Haas K.F., Leopold D.A., Clark H.G.: Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents. Biomaterials 13, 176–182 (1992)

    Article  Google Scholar 

  2. Baek S., Pence T.J.: On mechanically induced degradation of fiber reinforced hyperelastic materials. Math. Mech. Solids 16, 406–434 (2011)

    Article  MathSciNet  Google Scholar 

  3. Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. An. 63, 337–403 (1977)

    Article  MATH  Google Scholar 

  4. Bergström J.S., Boyce M.C.: Constitutive modeling of large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46, 931–954 (1998)

    Article  MATH  Google Scholar 

  5. Booth C.: The mechanical degradation of polymers. Polymers 4, 471–478 (1963)

    Article  Google Scholar 

  6. Chen R., Tyler D.R.: Origin of tensile stress-induced rate increases in the photochemical degradation of polymers. Macromolecules 37, 5430–5436 (2004)

    Article  Google Scholar 

  7. Chen R., Yoon M., Smalley A., Johnson D.C., Tyler D.R.: Investigation of the origin of tensile stress-induced rate enhancements in the photochemical degradation of polymers. J. Am. Chem. Soc. 126, 3054–3055 (2004)

    Article  Google Scholar 

  8. Chu, C.C.: Strain-accelerated hydrolytic degradation of synthetic absorbable sutures; surgical research, recent developments. In: Proceedings of the First Annual Scientific Session of the Academy of Surgical Research, Pergamon Press, San Antonio, pp. 111–115 (1985)

  9. Ciarlet P.G.: Three-Dimensional Elasticity. Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  10. Coleman B.D., Noll W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colombo A., Karvouni E.: Biodegradable stents: fulfilling the mission and stepping away. Circ. 102, 371–373 (2000)

    Article  Google Scholar 

  12. Cuitino A., Ortiz M.: A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. Eng. Comput. 9, 255–263 (1992)

    Google Scholar 

  13. El Sayed, T.: Constitutive Models for Polymers and Soft Biological Tissues. PhD thesis California Institute of Technology (2007)

  14. Fancello E., Ponthot J.P., Stainier L.: A variational formulation of constitutive models and updates in non-linear finite viscoelasticity. Int. J. Numer. Meth. Eng. 65, 1831–1864 (2006)

    Article  MATH  Google Scholar 

  15. Gopferich A.: Polymer degradation and erosion: mechanisms and applications. Eur. J. Pharm. Biopharm. 4, 1–11 (1996)

    Google Scholar 

  16. Grabow N., Bunger C.M., Sternberg K.: Mechanical properties of a biodegradable balloon-expandable stent from poly(L-lactide) for peripheral vascular application. ASME J. Med. Devices 1, 84–88 (2007)

    Article  Google Scholar 

  17. Grabow N., Schlun M., Sternberg K.: Mechanical properties of laser cut poly-L lactide microspecimens: implications for stent design, manufacture, and sterilization. J. Biomech. Eng. 127, 25–31 (2005)

    Article  Google Scholar 

  18. Gutwald R., Pistner H., Reuther J., Muhling J.: Biodegradation and tissue reaction in a long-term implantation study of poly(L-lactide. J. Mater. Sci. Mater. Med. 5, 485–490 (1994)

    Article  Google Scholar 

  19. Holzapfel G.: A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int. J. Solids Struct. 33(20–22), 3019–3034 (1996)

    Article  MATH  Google Scholar 

  20. Holzapfel G.A., Gasser T.C., Ogden R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Holzapfel G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. 1st edn. Wiley, New York (2000)

    MATH  Google Scholar 

  22. Holzapfel G., Ogden R.: Constitutive modelling of arteries. Proc. R. Soc. A Math. Phys. Eng. Sci. 466(2118), 1551–1597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kleuter B., Menzel A., Steinmann P.: Generalized parameter identification for finite viscoelasticity. Comput. Methods Appl. Mech. Eng. 196(35–36), 3315–3334 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Knowles J.K.: Finite anti-plane shear field near tip of a crack for a class of incompressible elastic solids. Int. J. Fract. 13, 611–639 (1977)

    Article  MathSciNet  Google Scholar 

  25. Langer R.: Drug delivery and targeting. Nature 392(6679), 5–10 (1998)

    Google Scholar 

  26. Lee E.H.: Elastic plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)

    Article  MATH  Google Scholar 

  27. Levenberg, S., Langer, R.: Advances in tissue engineering. In: Schatten, G.P. (ed.) Current Topics in Developmental Biology, Number 61, 1st edn, Elsevier, San Diego, pp. 113–134 (2004)

  28. Lubarda V.A., Benson D.J., Meyers M.A.: Strain-rate effects in rheological models of inelastic response. Int. J. Plast. 19, 1097–1118 (2003)

    Article  MATH  Google Scholar 

  29. Miller N.D., Williams D.F.: The in vivo and in vitro Degradation of poly(glycolic acid) suture material as a function of applied strain. Biomaterials 5(6), 365–368 (1984)

    Article  Google Scholar 

  30. Moore J.E., Soares J.S., Rajagopal K.R.: Biodegradable Stents: biomechanical modeling challenges and opportunities. Cardiovasc. Eng. Technol. 1, 52–65 (2010)

    Article  Google Scholar 

  31. Muliana A.H., Rajagopal K.R.: On the response of viscoelastic biodegradable polymeric solids. Mech. Res. Commun. 39(1), 51–58 (2011)

    Article  Google Scholar 

  32. Ogden R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)

    Google Scholar 

  33. Ortiz M., Molinari A.: Effect of strain-hardening and rate sensitivity on the dynamic growth of a void in a plastic material. J. Appl. Mech.-T. ASME 59, 48–53 (1992)

    Article  MATH  Google Scholar 

  34. Ortiz M., Stainier L.: The variational formulation of viscoplastic constitutive updates. Comput. Method. Appl. M. 171(3–4), 419–444 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ortiz M., Radovitzky R.A., Repetto E.A.: The computation of the exponential and logarithmic mappings and their first and second linearizations. Int. J. Numer. Meth. Eng. 52, 1431–1441 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pişkin, E., Tuncel, A., Denizli, A., Denkbaş, E.B., Ayhan, H., Çiçek, H., Xu, K.T.: Nondegradable and biodegradable polymer particles-preparation and some selected biomedical applications. In: Usmani, A., et al. (eds.) Diagnostic Biosensor Polymers, ACS Symposium Series, American Chemical Society, Washington, DC, pp. 222–223 (1994)

  37. Pistner H., Bendix D.R., Muhling J., Reuther J.F.: Poly(L-lactide)—a long-term degradation study in vivo. 3. Analytical characterization. Biomaterials 14, 291–298 (1993)

    Article  Google Scholar 

  38. Rajagopal K.R., Srinivasa A.R., Wineman A.S.: On the shear and bending of a degrading polymer beam. Int. J. Plast. 23(9), 1618–1636 (2007)

    Article  MATH  Google Scholar 

  39. Rajagopal K.R., Wineman A.S.: A constitutive equation for nonlinear solids which undergo deformation induced microstructural changes. Int. J. Plast. 8(4), 385–395 (1992)

    Article  MATH  Google Scholar 

  40. Reese S., Govindjee S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998)

    Article  MATH  Google Scholar 

  41. Renouf G.A.C., Rose J., Farrar D.F., Cameron R.E.: The effect of crystallinity on the deformation mechanism and bulk mechanical properties of plla. Biomaterials 26, 5771–5782 (2005)

    Article  Google Scholar 

  42. Schmitt L.M.: Theory of genetic algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling. Theor. Comput. Sci. 310, 181–231 (2004)

    Article  MATH  Google Scholar 

  43. Sidoroff F.: Un modèle viscoélastique non linéaire avec configuration intermédiaire. J. Mécanique 13, 679–713 (1974)

    MathSciNet  Google Scholar 

  44. Soares J.S., Moore J.E., Rajagopal K.R.: Constitutive framework for biodegradable polymers with applications to biodegradable stents. ASAIO J. 54(3), 295–301 (2008)

    Article  Google Scholar 

  45. Soares J.S., Rajagopal K.R., Moore J.E.: Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus. Biomech. Model. Mechanobiol. 9(2), 177–186 (2010)

    Article  Google Scholar 

  46. Soares, J.S.: Constitutive Modeling for Biodegradable Polymers for Applications in Endovascular Stents. PhD thesis Texas A and M University (2008)

  47. Tammela T.L., Talja M.: Biodegradable urethral stents. BJU Int. 92, 843–850 (2003)

    Article  Google Scholar 

  48. Weinberg K., Mota A., Ortiz M.: A variational constitutive model porous metal plasticity. Comput. Mech. 37, 142–152 (2006)

    Article  MATH  Google Scholar 

  49. Wineman A., Min J.H.: The pressurized cylinder problem for nonlinear viscoelastic materials with a strain clock. Math. Mech. Solids 1, 393–409 (1996)

    Article  MATH  Google Scholar 

  50. Yang Q., Stainer L., Ortiz M.: A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids 54, 401–424 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer El-Sayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, K.A., El-Sayed, T. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers. Acta Mech 224, 287–305 (2013). https://doi.org/10.1007/s00707-012-0760-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0760-7

Keywords

Navigation