Skip to main content
Log in

Coupled vibration of a cantilever micro-beam submerged in a bounded incompressible fluid domain

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper investigates the free vibrations of a cantilever micro-beam submerged in a bounded frictionless and incompressible fluid cavity. Based on the Fourier–Bessel series expansion and using linear potential theory, an analytical method is proposed to analyze the eigenvalue problem, where the fluid effect emerges as an added mass. Wet beam vibration mode shapes together with the sloshing modes of the oscillating liquid are depicted. Moreover, effects of geometrical configuration and fluid density on the natural frequencies of the coupled system are evaluated. Results show that in spite of the high added mass values related to lower modes, presence of the fluid changes the higher modes more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raiteri R., Grattarola M., Butt H.J., Skladal P.: Micromechanical cantilever-based biosensors. Sens. Actuators B 79, 115–126 (2001)

    Article  Google Scholar 

  2. Oden P.I., Chen G.Y., Steele R.A., Warmack R.J., Thundat T.: Viscous drag measurement utilizing microfabricated cantilevers. Appl. Phys. Lett. 68, 3814–3816 (1996)

    Article  Google Scholar 

  3. Berli C.L.A., Cardona A.: On the calculation of viscous damping of microbeam resonators in air. J. Sound Vib. 327, 249–253 (2009)

    Article  Google Scholar 

  4. Ostasevicius V., Dauksevicius R., Gaidys R., Palevicius A.: Numerical analysis of fluid–structure interaction effects on vibrations of cantilever microstructure. J. Sound Vib. 308, 660–673 (2007)

    Article  Google Scholar 

  5. Pandey A.k., Pratap R.: Effect of flexural modes on squeeze film damping in MEMS cantilever resonators. J. Micromech. Microeng. 17, 2475–2484 (2007)

    Article  Google Scholar 

  6. Sader J.E.: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84(1), 64–76 (1998)

    Article  Google Scholar 

  7. Esmailzadeh M., Lakis A.A., Thomas M., Marcouiller L.: Three-dimensional modeling of curved structures containing and/or submerged in fluid. Finite Elem. Anal. Des. 44, 334–345 (2008)

    Article  Google Scholar 

  8. Liang C.C., Liao C.C., Tai Y.S., Lai W.H.: The free vibration analysis of submerged cantilever plates. Ocean Eng. 28(9), 1225–1245 (2001)

    Article  Google Scholar 

  9. Lindholm U.S., Kana D.D., Chu W.H., Abramson H.N.: Elastic vibration characteristics of cantilever plates in water. J. Ship Res. 9, 11–12 (1965)

    Google Scholar 

  10. Ergin A., Ugurlu B.: Linear vibration analysis of cantilever plates partially submerged in fluid. J. Fluids Struct. 17(7), 927–939 (2003)

    Article  Google Scholar 

  11. Gorman D.G., Trendafilova I., Mulholland A.J., Horacek J.: Analytical modeling and extraction of the modal behavior of a cantilever beam in fluid interaction. J. Sound Vib. 308, 231–245 (2007)

    Article  Google Scholar 

  12. Atkinson C., Manrique de Lara M.: The frequency response of a rectangular cantilever plate vibrating in a viscous fluid. J. Sound Vib. 300, 352–367 (2007)

    Article  MATH  Google Scholar 

  13. Jeong K.H.: Free vibration of two identical circular plates coupled with bounded fluid. J. Sound Vib. 260, 653–670 (2003)

    Article  Google Scholar 

  14. Jeong K.-H.: Hydroelastic vibration of two annular plates coupled with abounded compressible fluid. J. Fluids Struct. 22(8), 1079–1096 (2006)

    Article  Google Scholar 

  15. Jeong K.-H., Yoo G.H., Lee S.C.: Hydroelastic vibration of two annular plates coupled with abounded compressible fluid. J. Sound Vib. 272, 539–555 (2004)

    Article  Google Scholar 

  16. Rezazadeh G., Fathalilou M., Shabani R., Tarverdilo S., Talebian S.: Dynamic characteristics and forced response of an electrostatically-actuated microbeam subjected to fluid loading. Microsyst. Technol. 15, 1355–1363 (2009)

    Article  Google Scholar 

  17. Harrison C., Tavernier E., Vancauwenberghe O., Donzier E., Hsu K., Goodwin A.R.H., Marty F., Mercier B.: On the response of a resonating plate in a liquid near a solid wall. Sens. Actuators A 134, 414–426 (2007)

    Article  Google Scholar 

  18. Meirovitch L.: Principles and Techniques of Vibrations. Prentice-Hall International, Englewood Cliffs (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shabani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabani, R., Hatami, H., Golzar, F.G. et al. Coupled vibration of a cantilever micro-beam submerged in a bounded incompressible fluid domain. Acta Mech 224, 841–850 (2013). https://doi.org/10.1007/s00707-012-0792-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0792-z

Keywords

Navigation