Skip to main content
Log in

Engineering science aspects of the Hall–Petch relation

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Hall and Petch had established in the early 1950s a linear inverse square root of grain diameter dependence for yielding and cleavage of polycrystalline iron and steel materials, with ordinate intercept stress, σ 0, and slope value, k. Petch and colleagues extended the relationship in 1962 to the full stress–strain behavior of a diverse number of metals and alloys. Connection with other mechanical properties such as the hardness, fatigue and strain rate sensitivity properties was demonstrated in 1970. In 1983, Weng incorporated the dependence into a micromechanical analysis of material strength by building onto earlier Taylor-initiated work on multiply-coupled grain deformations. More recently, Armstrong, Weng and colleagues have applied dislocation and continuum mechanics models of the H–P relationship to predict order-of-magnitude increases in strength properties of nanopolycrystalline materials, especially including description of the strain rate sensitivity dependence on average grain diameter. These topics are assessed from a dislocation mechanics viewpoint in the present report that provides H–P connection with the Taylor dislocation density-based theory of strength properties, in σ 0 ɛ , and with the Griffith brittle fracture theory by way of pointing to the H–P slope value, k ɛ , being a microstructural stress intensity analogous to the fracture mechanics parameter, K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, R.W.: Hall–Petch analysis from a combined mechanics and materials viewpoint. Mechanical and Aerospace Engineering Colloquium Series, 4/17/13, Rutgers, The State University of New Jersey, Piscataway, http://www.cecd.umd.edu

  2. de Reaumur, R.A.F.: On methods of recognizing defects and good quality in steel and on several ways of comparing different grades of steel. In: L’Art de Convertir le Fer Forge en Acier (Paris, 1722) pp. 63–106; transl. A.G. Sisco (Chicago, 1956) pp. 176–204

  3. Grignon, P.C.: “On the metamorphoses of iron”, in Memoires de Physique sur l’Art de Fabriquer de Fer” (Paris. 1775) pp. 56–90, transl. P. Boucher and C.S. Smith, in Sources for the History of the Science of Steel 1532–1786 (The Society for the History of Technology and the M.I.T. Press, Cambridge, MA, 1968) pp. 125–164.

  4. Smith, C.S., Burke, J.G., Atoms, Blacksmiths and Crystals: Practical and Theoretical Views of the Structure of Matter in the Seventeenth and Eighteenth Centuries (William Andrews Clark Memorial Library, Univ. California, Los Angeles, 1967)

  5. Smith C.S.: Introduction to grains, phases, and interfaces—an interpretation of microstructure. Trans. TMS-AIME 175, 15–51 (1948)

    Google Scholar 

  6. Smith C.S.: Further notes on the shape of metal grains: Space—filling polyhedra with unlimited sharing of corners and faces. Acta Metall. 1, 295–300 (1953)

    Article  Google Scholar 

  7. Rhines F.N., Craig K.R., DeHoff R.T.: Mechanism of steady-state grain growth in aluminum. Metall. Trans. 5, 413–425 (1974)

    Article  Google Scholar 

  8. Armstrong R.W.: Strengthening mechanisms and brittleness in metals. J. Ocean Eng. 1, 239–256 (1969)

    Article  Google Scholar 

  9. Jagannadham K., Armstrong R.W.: Evidence for dislocation pile-ups at grain boundaries from slip band step height observations. Scr. Metall. 21, 1459–1462 (1987)

    Article  Google Scholar 

  10. Gudas, J.P., Irwin, G.R., Armstrong, R.W., Zhang, X.J.: A model for transition fracture of structural steels from observations of isolated cleavage regions. In: Blauel, J.G., Schwalbe, K.-H. (eds.) Defect Assessment in Components—-Fundamentals and Applications, ESIS/EGF9 (Mech. Eng. Publ. Ltd., London, 1991) pp. 549–568

  11. Armstrong, R.W.: Dislocation mechanics description of polycrystal plastic flow and fracturing behaviors. In: Meyers, M.A., Armstrong, R.W., Kirchner, K. (eds.) Mechanics and Materials: Fundamentals and Linkages, (Wiley, NY, 1999) Ch. 10, pp. 363–398

  12. Unwin W.C.: On the yield point of iron and steel and the effect of repeated straining and annealing. Proc. R. Soc. Lond. 57, 178–187 (1894)

    Article  Google Scholar 

  13. Petch, N.J.: Theory of the yield point and strain-ageing in steel. In: Charles, J.A., Smith, G.C. (eds.) Advances in Physical Metallurgy; Sir Alan Cottrell’s 70th Birthday Meeting (Inst. Met., London, 1990) pp. 11–25

  14. Armstrong R.W., Zerilli, F.J.: Dislocation mechanics based viscoplasticity description of fcc, bcc and hcp metal deformation and fracturing behavior. Proc. ASME Mater. Div. (ASME, NY, 1995) MD-69-1, pp. 417–428

  15. Taylor G.I.: The mechanism of plastic deformation of crystals; part I.-theoretical. Proc. R. Soc. Lond. 145, 362–387 (1934)

    Article  MATH  Google Scholar 

  16. Bishop J.F.W., Hill R.: A theoretical derivation of the plastic properties of a polycrystalline face-centered metal. Philos. Mag. 42, 1298–1307 (1951)

    MATH  MathSciNet  Google Scholar 

  17. Armstrong, R.W.: Dislocation queueing analysis for the plastic deformation of aluminum polycrystals. In: Borland, D.W., Clarebrough, L.M., Moore, A.J.W. (eds.) Physics of Materials; A Festschrift for Dr. Walter Boas on the Occasion of his 75th Birthday (CSIRO and Univ. Melbourne Press, Australia, 1979) pp. 1–11

  18. Carreker R.P. Jr., Hibbard W.R. Jr.: Tensile deformation of aluminum as a function of temperature, strain rate and grain size. Trans. TMS-AIME 209, 1157–1163 (1957)

    Google Scholar 

  19. Hansen N.: Effect of grain size and strain on the tensile flow stress of aluminum at room temperature. Acta Metall. 25, 863–869 (1977)

    Article  Google Scholar 

  20. Fleischer R.L., Hosford W.F. Jr.: Easy glide and grain boundary effects in polycrystalline aluminum. Trans. TMS-AIME 221, 244–247 (1961)

    Google Scholar 

  21. Taylor G.I.: Resistance to shear in metal crystals. Trans. Faraday Soc. XXIV, 121–126 (1928)

    Article  Google Scholar 

  22. Polanyi, M.: Deformation, rupture and hardening of crystals. Trans. Faraday Soc. XXIV, 72–83, 172 (1928)

  23. Tech Notes: Orange Peel, Adv. Mater. Proc., 163(7), 50 (2005)

  24. Howe S., Elbaum C.: The relation between the plastic deformation of aluminum single crystals and polycrystals. Philos. Mag. 6, 37–48 (1961)

    Article  Google Scholar 

  25. Havner, K.S., Varadarajan, R.: A quantitative study of a crystalline aggregate model. Int. J. Solids Struct. 9, 379–394 (1973); Ibid. 13, 395–407 (1977)

    Google Scholar 

  26. Armstrong R.W.: On size effects in polycrystal plasticity. J. Mech. Phys. Solids 9, 196–199 (1961)

    Article  Google Scholar 

  27. Keller C., Hug E.: Hall–Petch behavior of Ni polycrystals with a few grains per thickness. Mater. Letts. 62, 1718–1720 (2008)

    Article  Google Scholar 

  28. Justinger H., Hirt G.: Estimation of grain size and grain orientation influence in microforming processes by Taylor factor considerations. J. Mater. Process. Technol. 209, 2111–2121 (2009)

    Article  Google Scholar 

  29. Weng G.J.: A micromechanical theory of grain-size dependence in metal plasticity. J. Mech. Phys. Sol. 31, 195–203 (1983)

    Article  Google Scholar 

  30. Weng G.J., Phillips A.: The stress fields of continuous distributions of dislocations and of their movement in a polycrystalline aggregate. Int. J. Solids Struct. 14, 535–544 (1978)

    Article  MATH  Google Scholar 

  31. Armstrong R.W., Codd I., Douthwaite R.M., Petch N.J.: The plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 45–58 (1962)

    Article  Google Scholar 

  32. Armstrong, R.W.: The yield and flow stress dependence on polycrystal grain size. In: Baker, T.N. (eds.) Yield, Flow and Fracture of Polycrystals, (Appl. Sci. Publ., London, 1983) Ch. 1, pp. 1–31

  33. Zener C.: A theoretical criterion for the initiation of slip bands. Phys. Rev. 69, 128–129 (1946)

    Article  Google Scholar 

  34. Keer L.M.: A note on shear and combined loading for a penny-shaped crack. J. Mech. Phys. Solids 14, 1–8 (1966)

    Article  Google Scholar 

  35. Liu H.W., Gao Q.: The equivalence between dislocation pile-ups and cracks. Theor. Appl. Fract. Mech. 12, 195–204 (1990)

    Article  Google Scholar 

  36. Armstrong R.W.: Dislocation viscoplasticity aspects of material fracturing. Eng. Fract. Mech. 77, 1348–1359 (2010)

    Article  MathSciNet  Google Scholar 

  37. Hutchinson J.W.: Plastic deformation of bcc polycrystals. J. Mech. Phys. Sol. 12, 25–33 (1964)

    Article  Google Scholar 

  38. Hauser, F.E., Landon, P.R., Dorn, J.E.: Deformation and fracture mechanisms of polycrystalline magnesium at low temperatures. Trans. Am. Soc. Met., 48, 986–1002, including discussion (1956)

    Google Scholar 

  39. Hauser F.E., Landon P.R., Dorn J.E.: Fracture of magnesium alloys at low temperature. Trans. TMS-AIME 206, 589–593 (1956)

    Google Scholar 

  40. Armstrong R.W.: Theory for the tensile ductile-brittle behavior of polycrystalline hcp materials; with application to beryllium. Acta Metall. 16, 347–356 (1968)

    Article  Google Scholar 

  41. Caceres C.H., Blake A.: On the strain hardening behavior of magnesium at room temperature. Mater. Sci. Eng. A 462, 193–196 (2007)

    Article  Google Scholar 

  42. Yang Q., Ghosh A.K.: Deformation behavior of ultrafine-grain (UFG) AZ31B Mg alloy at room temperature. Acta Mater. 54, 5159–5170 (2006)

    Article  Google Scholar 

  43. Del Valle J.A., Ruano O.A.: Influence of grain size on the strain rate sensitivity in an Mg-Al-Zn alloy at moderate temperatures. Scr. Mater. 55, 775–778 (2006)

    Article  Google Scholar 

  44. Lee, W.-T., Chang, C.P.: Ph.D. Thesis. Nat. Sun Yat-Sen University, TW (2011)

  45. Yuan W., Panigrahi S.K., Su J.-Q., Mishra R.S.: Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy. Scr. Mater. 65, 994–997 (2011)

    Article  Google Scholar 

  46. Wilson D.V., Chapman J.A.: Effects of preferred orientation on the grain size dependence of yield strength in metals. Philos. Mag. 8, 1543–1551 (1963)

    Article  Google Scholar 

  47. Hansen N., Ralph B.: The strain and grain size dependence of the flow stress of copper. Acta Metall. 30, 411–417 (1982)

    Article  Google Scholar 

  48. Keller C., Hug E.: Hall–Petch behavior of Ni polycrystals with a few grains per thickness. Mater. Letts. 62, 1718–1720 (2008)

    Article  Google Scholar 

  49. Lu L., Chen X., Huang X., Lu K.: Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009)

    Article  Google Scholar 

  50. Tsuji N., Ito Y., Saito Y., Minamino Y.: Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893–899 (2002)

    Article  Google Scholar 

  51. Armstrong, R.W., Smith, T.R.: Dislocation pile-up predictions for the strength properties of ultrafine grain size fcc metals. In: Suryanarayana, C., Singh, J., Froes, F.H. (eds.) Processing and Properties of Nanocrystalline Materials (TMS-AIME, Warrendale, PA, 1996) pp. 345–354

  52. Armstrong R.W., Chou Y.T., Fisher R.M., Louat N.: The limiting grain size dependence of the strength of a polycrystalline aggregate. Philos. Mag. 14, 943–951 (1966)

    Article  Google Scholar 

  53. Li J.C.M., Liu G.C.T.: Circular dislocation pile-ups: I. Strength of ultrafine polycrystalline aggregates. Philos. Mag. 15, 1059–1063 (1967)

    Article  Google Scholar 

  54. Armstrong R.W., Walley S.M.: High strain rate properties of metals and alloys. Int. Mater. Rev. 53, 105–128 (2008)

    Article  Google Scholar 

  55. Armstrong R.W.: Strength and ductility of metals. Trans. Indian Inst. Met. 50, 521–531 (1997)

    Google Scholar 

  56. Prasad Y.V.R.K., Armstrong R.W.: Polycrystal versus single crystal strain rate sensitivity of cadmium. Philos. Mag. 29, 1421–1425 (1974)

    Article  Google Scholar 

  57. Armstrong R.W.: Thermal activation—strain rate analysis (TASRA) for polycrystalline metals. (Ind.) J. Sci. Ind. Res. 32, 591–598 (1973)

    Google Scholar 

  58. Prasad, Y.V.R.K., Madhava, N.M., Armstrong, R.W.: Strengthening of hcp metals due to the presence of grain boundaries. Grain Boundaries in Engineering Materials (Claiters Prss, Baton Rouge, LA, 1974) pp. 67–75, including discussion

  59. Rodriguez P., Armstrong R.W., Mannan S.L.: The dependence of activation area on grain size in cadmium. Trans. Indian Inst. Met. 56, 189–196 (2003)

    Google Scholar 

  60. Armstrong, R.W.: Strength and strain rate sensitivity for nanopolycrystals. In: Li, J.C.M. (ed.) Mechanical Properties of Nanocrystalline Materials (Pan Stanford Publishing Pte., Ltd., Singapore, 2011) Ch. 3, pp. 61–91

  61. Bell, J.F.: Generalized large deformation behavior for face-centered cubic solids—high purity copper; Philos. Mag. 10, 107ff (1963); “nickel, aluminum, gold, silver and lead”, Philos. Mag, 11, 1135–1156 (1965)

  62. Narutani T., Takamura J.: Grain-size strengthening in terms of dislocation density measured by resistivity. Acta Metall. Mater. 39, 2037–2049 (1991)

    Article  Google Scholar 

  63. Rodriguez P.: Grain size dependence of the activation parameters for plastic deformation; influence of crystal structure, slip system, and rate-controlling dislocation mechanism. Metall. Mater. Trans. A 35, 2697–2705 (2004)

    Article  Google Scholar 

  64. Armstrong R.W., Rodriguez P.: Flow stress/strain rate/grain size coupling for fcc polycrystals. Philos. Mag. 86, 5787–5796 (2006)

    Article  Google Scholar 

  65. Asaro R.J., Suresh S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369–3382 (2005)

    Article  Google Scholar 

  66. Weng, G.: A composite model of nanocrystalline metals. In: Mechanical Properties of Nanocrystalline Materials (Pan Stanford Publishing Pte., Ltd., Singapore, 2011) Ch. 4, pp. 94–131

  67. Schwaiger R., Moser B., Dao M., Chollacoop N., Suresh S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159–5172 (2003)

    Article  Google Scholar 

  68. Armstrong, R.W., Conrad, H., Nabarro, F.R. N.: Mechanical Properties of Nanostructured Materials and Nanocomposites:, ed. by I. Ovid’ko, C.S. Pande, R. Krishnamoorti, E. Lavernia and G. Skandan (Mater. Res. Soc., Warrendale, PA, 2004) 791, pp. 69–77

  69. Langdon T.G.: Grain boundary sliding revisited: Developments in sliding over four decades. J. Mater. Sci. 41, 597–609 (2006)

    Article  Google Scholar 

  70. Conrad H., Narayan J.: Mechanism for grain size hardening and softening in Zn. Acta Mater. 50, 5067–5078 (2002)

    Article  Google Scholar 

  71. Embury J.D., Fisher R.M.: The structure and properties of drawn pearlite. Acta Metall. 14, 147–152 (1966)

    Article  Google Scholar 

  72. Jang J.S.C., Koch C.C.: The Hall–Petch relationship in nanocrystalline iron produced by ball milling. Scr. Metall. 24, 1599–1604 (1990)

    Article  Google Scholar 

  73. Jang D., Atzmon M.: Grain size dependence of plastic deformation in nanocrystalline iron. J. Appl. Phys. 93, 9282–9286 (2003)

    Article  Google Scholar 

  74. Purcek G., Saray O., Karaman I., Maier H.J.: High strength and high ductility of ultrafine-grained interstitial-free steel produced by ECAE and annealing. Metall. Mater. Trans. A 43, 1880–1894 (2012)

    Article  Google Scholar 

  75. Smith, T.R., Armstrong, R.W., Hazzledine, P.M., Masumura, R.A., Pande, C.S.: Pile-up based Hall–Petch considerations at ultra-fine grain sizes. In: Otooni, M.A., Armstrong, R.W., Grant, N.J., Ishizaki, K. (eds.) Grain Size and Mechanical Properties—Fundamentals and Applications (Mater. Res. Soc., Pittsburgh, PA, 1995) 362, pp. 31–37

  76. Armstrong R.W.: Grain boundary structural influences on nanopolycrystal strength and strain rate sensitivity. Emerg. Mater. Res. 1, 31–37 (2012)

    Google Scholar 

  77. Carsley J.E., Ning J., Milligan W.W., Hackney S.A., Aifantis E.C.: A simple mixtures-based model for the grain size dependence of strength in nanophase metals. Nanostruct. Mater. 5, 441–448 (1995)

    Article  Google Scholar 

  78. Jiang B., Weng G.J.: A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. J. Mech. Phys. Solids 52, 1125–1149 (2004)

    Article  MATH  Google Scholar 

  79. Barai P., Weng G.J.: Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, GB zone, and grain-boundary sliding. Int. J. Plast. 25, 2410–2434 (2009)

    Article  Google Scholar 

  80. Rodriguez P., Armstrong R.W.: Strength and strain rate sensitivity for hcp and fcc nanopolycrystal metals. (Ind.) Bull. Mater. Sci. 29, 717–720 (2006)

    Google Scholar 

  81. Li J., Weng G.J.: A micromechanical approach to the stress—strain relations, strain rate sensitivity and activation volume of nanocrystalline materials. Int. J. Mech. Mater. Des. 9, 141–152 (2013)

    Article  Google Scholar 

  82. Anand, L.: Polycrystal plasticity. In: Meyers, M.A., Armstrong, R.W., Kirchner, H. (eds.) Mechanics of Materials: Fundamentals and Linkages (Wiley, NY, 1999) Ch. 8, pp. 231–269

  83. Kim H.-K., Oh S.-I.: Finite element analysis of grain-by-grain deformation by crystal plasticity with couple stress. Int. J. Plast. 19, 1245–1270 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  84. Armstrong R.W., Zerilli F.J.: Dislocation mechanics aspects of plastic instability and shear banding. Mech. Mater. 17, 319–327 (1994

    Article  Google Scholar 

  85. Chapman, J.A., Wilson, D.V.: The room-temperature ductility of polycrystalline magnesium. J. Inst. Met. 91, 39–40 (1962–63)

    Google Scholar 

  86. Armstrong, R.W.: Tensile ductility dependence on polycrystal grain size. In: McQueen, H.J., Bailon, J.-P., Dickson, J.I., Jonas, J.J., Akben, M.G. (eds.) Strength of Metals and Alloys; Proceedings of 7th International Conference ICSMA-CIRMA, (Pergamon Press, Oxford, 1985) pp. 195–200

  87. Petch N.J.: The ductile fracture of polycrystalline alpha-iron. Philos. Mag. 1, 186–190 (1956)

    Article  Google Scholar 

  88. Chin G.Y., Hosford W.F. Jr., Backofen W.A.: Ductile fracture of aluminum. Trans. TMS-AIME 230, 437–449 (1964)

    Google Scholar 

  89. Massart T.J., Pardoen T.: Strain gradient plasticity analysis of the grain-size-dependent strength and ductility of polycrystals with evolving grain boundary confinement. Acta Mater. 58, 5768–5781 (2010)

    Article  Google Scholar 

  90. Liu C.T., Armstrong R.W., Gurland J.: Determination of the frictional stress for polycrystalline iron and carbon steels from their stress- strain behavior and its grain size dependence. J. Iron Steel Inst. 209, 142–146 (1971)

    Google Scholar 

  91. Zhang X., Godfrey A., Huang X., Hansen N., Liu Q.: Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire. Acta Mater. 59, 3422–3430 (2011)

    Article  Google Scholar 

  92. Armstrong, R.W.: 60 years of Hall–Petch—past to present nano-scale connections. Strength of Fine-Grained Metals- 60 Years of Hall–Petch, Univ. Tokyo, 7/16-18/2013, (Japan) Mater. Trans.; http://www.jstage.jst.go.jp/browse/matertrans/advpub/0/ (2014)

  93. Sorby, H.C.: On the microscopical structure of iron and steel. J. Iron Steel Inst. (1), 255 (1887)

  94. Britton T.B., Wilkinson A.J.: Stress fields and geometrically necessary dislocation density distributions near the head of a blocked slip band. Acta Mater. 60, 5773–5782 (2012)

    Article  Google Scholar 

  95. Armstrong, R.W.: Hall–Petch analysis of dislocation pileups in thin material layers and in nanopolycrystals. J. Mater. Res., 28, (3), 1792–1798 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald W. Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, R.W. Engineering science aspects of the Hall–Petch relation. Acta Mech 225, 1013–1028 (2014). https://doi.org/10.1007/s00707-013-1048-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1048-2

Keywords

Navigation