Skip to main content
Log in

Analysis on nonlinear oscillations and resonant responses of a compressor blade

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper focuses on the nonlinear oscillations and the steady-state responses of a thin-walled compressor blade of gas turbine engines with varying rotating speed under high-temperature supersonic gas flow. The rotating compressor blade is modeled as a pre-twisted, presetting, thin-walled rotating cantilever beam. The model involves the geometric nonlinearity, the centrifugal force, the aerodynamic load and the perturbed angular speed due to periodically varying air velocity. Using Hamilton’s principle, the nonlinear partial differential governing equation of motion is derived for the pre-twisted, presetting, thin-walled rotating beam. The Galerkin’s approach is utilized to discretize the partial differential governing equation of motion to a two-degree-of-freedom nonlinear system. The method of multiple scales is applied to obtain the four-dimensional nonlinear averaged equation for the resonant case of 2:1 internal resonance and primary resonance. Numerical simulations are presented to investigate nonlinear oscillations and the steady-state responses of the rotating blade under combined parametric and forcing excitations. The results of numerical simulation, which include the phase portrait, waveform and power spectrum, illustrate that there exist both periodic and chaotic motions of the rotating blade. In addition, the frequency response curves are also presented. Based on these curves, we give a detailed discussion on the contributions of some factors, including the nonlinearity, damping and rotating speed, to the steady-state nonlinear responses of the rotating blade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang S.M., Tsao S.M.: Dynamics of a pretwisted blade under nonconstant rotating speed. Comput. Struct. 62, 643–651 (1997)

    Article  MATH  Google Scholar 

  2. Surace G., Anghel V., Mares C.: Coupled bending-bending-torsion vibration analysis of rotating pretwisted blades: an integral formulation and numerical examples. J. Sound Vib. 206, 473–486 (1997)

    Article  Google Scholar 

  3. Chen C.L., Chen L.W.: Random response of a rotating composite blade with flexure-torsion coupling effect by the finite element method. Compos. Struct. 54, 407–415 (2001)

    Article  Google Scholar 

  4. Pesheck E., Pierre C., Shaw S.W.: Accurate reduced-order models for a simple rotor blade model using nonlinear normal modes. Math. Comput. Model. 33, 1085–1097 (2001)

    Article  MATH  Google Scholar 

  5. Sakar G., Sabuncu M.: Dynamic stability of a rotating asymmetric cross-section blade subjected to an axial periodic force. Int. J. Mech. Sci. 45, 1467–1482 (2003)

    Article  MATH  Google Scholar 

  6. Chandiramani N.K., Shete C.D., Librescu L.: Vibration of higher-order-shearable pretwisted rotating composite blades. Int. J. Mech. Sci. 45, 2017–2041 (2003)

    Article  MATH  Google Scholar 

  7. Lim C.W.: A spiral model for bending of nonlinearly pretwisted helicoidal structures with lateral loading. Int. J. Solids Struct. 40, 4257–4279 (2003)

    Article  MATH  Google Scholar 

  8. Bedoor B.O., Qaisia A.A.: Stability analysis of rotating blade bending vibration due to torsional excitation. J. Sound Vib. 282, 1065–1083 (2005)

    Article  Google Scholar 

  9. Turhan O., Bulut G.: Dynamic stability of rotating blades (beams) eccentrically clamped to a shaft with fluctuating speed. J. Sound Vib. 280, 945–964 (2005)

    Article  Google Scholar 

  10. Sabuncu M., Evran K.: The dynamic stability of a rotating pre-twisted asymmetric cross-section blade subjected to lateral parametric excitation. Finite Elem. Anal. Des. 42, 1113–1122 (2006)

    Article  Google Scholar 

  11. Park J.H., Park H.Y., Jeong S.Y., Lee S., Shin Y.H., Park J.P.: Linear vibration analysis of rotating wind-turbine blade. Curr. Appl. Phys. 10, 332–334 (2010)

    Article  Google Scholar 

  12. Tang D.M., Dowell E.H.: Nonlinear response of a non-rotating rotor blade to a periodic gust. J. Fluids Struct. 10, 721–742 (1996)

    Article  Google Scholar 

  13. Bedoor B.O.: Dynamic model of coupled shaft torsional and blade bending deformations in rotors. Comput. Methods Appl. Mech. Eng. 169, 177–190 (1999)

    Article  MATH  Google Scholar 

  14. Choi S.T., Chou Y.T.: Vibration analysis of elastically supported turbomachinery blades by the modified differential quadrature method. J. Sound Vib. 240, 937–953 (2001)

    Article  Google Scholar 

  15. Nassar Y.N., Bedoor B.O.: On the vibration of a rotating blade on a torsionally flexible shaft. J. Sound Vib. 259, 1237–1242 (2003)

    Article  Google Scholar 

  16. Poirel D., Price S.J.: Bifurcation characteristics of a two-dimensional structurally non-linear airfoil in turbulent flow. Nonlinear Dyn. 48, 423–435 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang Y.F., Wang H.W., Gao Z.: Dynamic modeling of helicopter rotor blades. Tsinghua Sci. Technol. 14, 84–88 (2009)

    Article  Google Scholar 

  18. Ghorashi M.: Nonlinear analysis of the dynamics of articulated composite rotor blades. Nonlinear Dyn. 67, 227–249 (2012)

    Article  MathSciNet  Google Scholar 

  19. Lacarbonara, W., Arvin, H., Nejad, F.B.: A geometrically exact approach to the overall dynamics of elastic rotating blades-part 1: linear modal properties, Nonlinear Dynamics. doi:10.1007/s11071-012-0486-z (2012)

  20. Arvin H., Lacarbonara W., Nejad F.B.: A geometrically exact approach to the overall dynamics of elastic rotating blades-part II: flapping nonlinear normal modes. Nonlinear Dyn. 70, 2279–2301 (2012)

    Article  Google Scholar 

  21. Banerjee J.R.: Free vibration analysis of twisted beam using the dynamic stiffness method. Int. J Solids Struct. 38, 6703–6722 (2001)

    Article  MATH  Google Scholar 

  22. Librescu L., Oh S.Y., Song O.: Spinning thin-walled beams made of functionally graded materials: modeling, vibration and instability. Eur. J. Mech. A/Solids 23, 499–515 (2004)

    Article  MATH  Google Scholar 

  23. Ozdemir O., Kaya M.O.: Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli–Euler beam by differential transform method. J. Sound Vib. 289, 413–420 (2006)

    Article  Google Scholar 

  24. Fazelzadeh S.A., Hosseini M.: Aerothermoelastic behavior of supersonic rotating thin-walled beams made of functionally graded materials. J. Fluids Struct. 23, 1251–1264 (2007)

    Article  Google Scholar 

  25. Shadmehri F., Haddadpour H., Kouchakzadeh M.A.: Flexural–torsional behavior of thin-walled composite beams with closed cross-section. Thin-Walled Struct. 45, 699–705 (2007)

    Article  Google Scholar 

  26. Kaya M.O., Ozgumus O.O.: Flexural–torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM. J. Sound Vib. 306, 495–506 (2007)

    Article  Google Scholar 

  27. Vo T.P., Lee J., Ahn N.: On sixfold coupled vibrations of thin-walled composite box beams. Compos. Struct. 89, 524–535 (2009)

    Article  Google Scholar 

  28. Valverde J., Vallejo D.G.: Stability analysis of a substructured model of the rotating beam. Nonlinear Dyn. 55, 355–372 (2009)

    Article  MATH  Google Scholar 

  29. Lee U., Jang I.: Spectral element model for axially loaded bending-shear–torsion coupled composite Timoshenko beams. Compos. Struct. 92, 2860–2870 (2010)

    Article  Google Scholar 

  30. Yao M.H., Chen Y.P., Zhang W.: Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 68, 487–504 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Shahgholi M., Khadem S.E.: Stability analysis of a nonlinear rotating asymmetrical shaft near the resonances. Nonlinear Dyn. 70, 1311–1325 (2012)

    Article  MathSciNet  Google Scholar 

  32. Sapountzakis E.J., Dikaros I.C.: Nonlinear flexural–torsional dynamic analysis of beams of variable doubly symmetric cross section-application to wind turbine towers. Nonlinear Dyn. 73, 199–227 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mccarthy T.R., Chattopadhyay A.: A refined higher-order composite box beam theory. Compos. Part B 28B, 523–534 (1997)

    Article  Google Scholar 

  34. Kim S.S., Kim J.H.: Rotating composite beam with a breathing crack. Compos. Struct. 60, 83–90 (2003)

    Article  Google Scholar 

  35. Thakkar D., Ganguli R.: Dynamic response of rotating beams with piezoceramic actuation. J. Sound Vib. 270, 729–753 (2004)

    Article  Google Scholar 

  36. Choi S.C., Park J.S., Kim J.H.: Active damping of rotating composite thin-walled beams using MFC actuators and PVDF sensors. Compos. Struct. 76, 362–374 (2006)

    Article  Google Scholar 

  37. Wang J.H., Qin D.T., Lim T.C.: Dynamic analysis of horizontal axis wind turbine by thin-walled beam theory. J. Sound Vib. 329, 3565–3586 (2010)

    Article  Google Scholar 

  38. Saravia C.M., Machado S.P., Cortínez V.H.: Free vibration and dynamic stability of rotating thin-walled composite beams. Eur. J. Mech. A/Solids 30, 432–441 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  39. Piovan M.T., Machado S.P.: Thermoelastic dynamic stability of thin-walled beams with graded material properties. Thin-Walled Struct. 49, 437–447 (2011)

    Article  Google Scholar 

  40. Yao, M.H., Zhang, W.: Using the extended Melnikov method to study multi-pulse chaotic motions of a rectangular thin plate. Int. J. Dyn. Control (2013). doi:10.1007/s40435-013-0031-z

  41. Librescu L., Song O.: Thin-Walled Composite Beams. Springer, Netherlands (2006)

    MATH  Google Scholar 

  42. Nayfeh A.H., Mook D.T.: Nonlinear Oscillations. Wiley-Interscience, New York (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, M.H., Zhang, W. & Chen, Y.P. Analysis on nonlinear oscillations and resonant responses of a compressor blade. Acta Mech 225, 3483–3510 (2014). https://doi.org/10.1007/s00707-014-1151-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1151-z

Keywords

Navigation