Skip to main content
Log in

Magneto-thermoelastic response in a functionally graded rotating medium due to a periodically varying heat source

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper deals with the problem of magneto-thermoelastic interactions in a functionally graded isotropic, unbounded, rotating medium due to a periodically varying heat source in the context of the linear theory of generalized thermoelasticity without energy dissipation and with energy dissipation. The governing equations of generalized thermoelasticity (GN model) for a functionally graded material under the influence of a magnetic field are established. The Laplace–Fourier double transform technique has been used to get the solution. The inversion of Fourier transform is done by using residual calculus, where the poles of the integrand are obtained numerically in the complex domain by using Laguerre’s method, and the inversion of the Laplace transformation is done numerically using a method based on Fourier series expansion technique. The numerical estimates for displacements, temperature and stress are obtained for a hypothetical material. The solution to the analogous problem is obtained by taking a suitable non-homogeneous parameter. Finally, the results obtained are presented graphically to show the effect of rotation, non-homogeneity, damping coefficient and magnetic field on displacements, temperature and stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

u :

Displacement vector

λ, μ :

Lamé constants

ρ :

Constant mass density of the medium

γ :

Thermal modulus

α t :

Coefficient of linear thermal expansion

T 0 :

Uniform reference temperature

T :

Small temperature increase above the reference temperature T 0

J :

Electric current density vector

B :

Magnetic induction vector

c v :

Specific heat of the medium at constant strain

K*:

A material constant characteristic for the GN theory

H :

Total magnetic field vector at any time

h :

Perturbed magnetic field

E :

Electric field vector

F :

Body force

μ e :

Magnetic permeability of the medium

σ :

Electric conductivity of the medium

C T :

Non-dimensional finite thermal wave speed of GN theory

\({\epsilon_{T} }\) :

Thermoelastic coupling constant

K :

Thermal conductivity

κ :

Thermal diffusivity

Ω :

Angular velocity

References

  1. Biot M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chadwick P.: Thermoelasticity: the dynamic theory. In: Sneddon, I.N., Hill, R. (eds) Progress in Solid Mechanics, vol. 1, pp. 265. North-Holland, Amsterdam (1960)

  3. Lord H.W., Shulman Y.: A generalized dynamical theory of thermoelasticity. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  4. Green A.E., Lindsay K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  5. Green A.E., Naghdi P.M.: A re-examination of the basic postulate of thermo-mechanics. Proc. R. Soc. Lond. 432, 171–194 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Green A.E., Naghdi P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15, 252–264 (1992)

    MathSciNet  Google Scholar 

  8. Chandrasekhariah D.S.: A note on the uniqueness of solution in the linear theory of thermoelasticity without energy dissipation. J. Elast. 43, 279–283 (1996)

    Article  Google Scholar 

  9. Chandrasekhariah D.S.: A uniqueness theorem in the theory of thermoelasticity without energy dissipation. J. Therm. Stress. 19, 267–272 (1996)

    Article  Google Scholar 

  10. Das P., Kanoria M.: Magneto-thermo-elastic waves in an infinite perfectly conducting elastic solid with energy dissipation. Appl. Math. Mech. 30, 221–228 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Das P., Kanoria M.: Two-temperature magneto-thermo-elasticity response in a perfectly conducting medium based on GN III model. Int. J. Pure Appl. Math. 81, 199–229 (2012)

    MATH  Google Scholar 

  12. Roychoudhuri S.K., Dutta P.S.: Thermoelastic interaction without energy dissipation in an infinite solid with distributed periodically varying heat sources. Int. J. Solids Struct. 42, 4192–4203 (2005)

    Article  MATH  Google Scholar 

  13. Kar A., Kanoria M.: Thermo-elastic interaction with energy dissipation in an unbounded body with a spherical hole. Int. J. Solids Struct. 44, 2961–2971 (2007)

    Article  MATH  Google Scholar 

  14. Kar A., Kanoria M.: Thermoelastic interaction with energy dissipation in a transversely isotropic thin circular disc. Eur. J. Mech. A Solids 26, 969–981 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Paria G.: On magneto-thermo-elastic plane waves. Proc. Camb. Philos. Soc. 58, 527–531 (1962)

    Article  MathSciNet  Google Scholar 

  16. Das P., Kanoria M.: Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect. J. Therm. Stress. 36, 239–258 (2013)

    Article  Google Scholar 

  17. Hsieh, R.K.T.: Mechanical modelling of new electromagnetic materials. In: Proceedings of the IUTAM symposium Stockholm, Sweden, 2–6 April 1990

  18. Ezzat M.A., Othman M.I., El-Karamany A.S.: Electro-magneto-thermo-elastic plane waves with thermal relaxation in a medium of perfect conductivity. J. Therm. Stress. 24, 411–432 (2001)

    Article  Google Scholar 

  19. Roychoudhuri S.K.: Magneto-thermo-elastic waves in an infinite perfectly conducting solid without energy dissipation. J. Tech. Phys. 47, 63–72 (2006)

    Google Scholar 

  20. Sarkar N., Lahiri A.: Electromagneto-thermoelastic interactions in an orthotropic slab with two relaxation times. Comput. Math. Model. 23, 461–477 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nayfeh A., Nemat-Nasser S.: Thermo-elastic waves in a solids with thermal relaxation. Acta Mech. 12, 43–69 (1971)

    Article  Google Scholar 

  22. Nayfeh A., Nemat-Nasser S.: Electro-magneto-thermo-elastic plane waves in solid with thermal relaxation. J. Appl. Mech. 39, 108–113 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sherief H.H., Youssef H.M.: Short time solution for a problem in magneto thermoelasticity with thermal relaxation. J. Therm. Stress. 27, 537–559 (2004)

    Article  Google Scholar 

  24. Roychoudhuri S.K., Chatterjee G.: A coupled magneto-thermo-elastic problem in a perfectly conducting elastic half-space with thermal relaxation. Int. J. Math. Mech. Sci. 13, 567–578 (1990)

    Article  Google Scholar 

  25. Ezzat M.A.: State space approach to generalized magneto-thermoelasticity with two relaxation times in a medium of perfect conductivity. J. Eng. Sci. 35, 741–752 (1997)

    Article  MATH  Google Scholar 

  26. Baksi A., Bera R.K.: Elgenfunction method for the solution of magneto-thermoelastic problems with thermal relaxation and heat source in three dimensions. Sci. Direct Math. Comput. Model. 42, 533–552 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Weterhold R.C., Wang S.S.: The use of functionally graded materials to eliminate or control thermal deformation. Compos. Sci. Tech. 31, 19–32 (1996)

    Google Scholar 

  28. Das P., Kanoria M.: Magneto thermoelastic response in a functionally graded isotropic unbounded medium under a periodically varying heat sources. Int. J. Thermophys. 30, 2098–2121 (2009)

    Article  MathSciNet  Google Scholar 

  29. Fahmy M.A.: A 2-D DRBEM for generalized magneto-thermo-viscoelastic transient response of rotating functionally graded anisotropic thick plate. Int. J. Eng. Tech. Innov. 3, 70–85 (2013)

    Google Scholar 

  30. Banik S., Kanoria M.: Generalized thermoelastic interaction in a functionally graded isotropic unbounded medium due to varying heat source with three-phase-lag effect. Math. Mech. Solids 18, 231–245 (2013)

    Article  MathSciNet  Google Scholar 

  31. Khosravifard A., Hematiyan M.R., Martin L.: Nonlinear transient heat conduction analysis of functionally graded materials in presence of heat sources using an improved meshless radial point interpolation method. Appl. Math. Model. 35, 4157–4174 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mallik S.H., Kanoria M.: Generalized thermoelastic functionally graded solid with a periodically varying heat source. Int. J. Solids Struct. 44, 7633–7645 (2007)

    Article  MATH  Google Scholar 

  33. Ghosh M.K., Kanoria M.: Analysis of thermoelastic response in a functionally graded spherically isotropic hollow sphere based on Green–Lindsay theory. Acta Mech. 207, 51–67 (2009)

    Article  MATH  Google Scholar 

  34. Arani A.G., Kolahchi R., Barzoki A.A.M., Loghman A.: Electro-thermo-mechanical behaviors of FGPM spheres using analytic method and ANSYS software. Appl. Math. Model. 36, 139–157 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schenberg M., Censor D.: Elastic waves in rotating media. Q. Appl. Math. 31, 115–122 (1973)

    Google Scholar 

  36. Chand D., Sharma J.N., Sud S.P.: Transient generalized magneto-thermo-elastic waves in a rotating half space. Int. J. Eng. Sci. 28, 547–556 (1990)

    Article  MATH  Google Scholar 

  37. Othman M.I.A.: The effect of rotation and thermal shock on a perfect conducting elastic halfspace in generalized magneto thermoelasticity with two relaxation times. Mech. Mech. Eng. 14, 31–55 (2010)

    Google Scholar 

  38. Mallik S.H., Kanoria M.: Effect of rotation on thermoelastic interaction with and without energy dissipation in an unbounded medium due to heat source—an eigenvalue approach. Far East J. Appl. Math. 23, 147–167 (2006)

    MATH  MathSciNet  Google Scholar 

  39. Singh J., Tomar S.K.: Plane waves in a rotating generalized thermo-elastic solid with voids. Int. J. Eng. Sci. Tech. 3, 34–41 (2011)

    Google Scholar 

  40. Othman M.I.A., Said S.M.: The effect of rotation on two dimensional problem of a fiber-reinforced thermoelastic with one relaxation time. Int. J. Thermophys. 33, 160–171 (2012)

    Article  Google Scholar 

  41. Othman, M.I.A., Hasona, W.M., Eraki, E.E.M.: Influence of gravity field and rotation on a generalized thermoelastic medium using a dual-phase-lag model. J. Thermoelast. {bf 1, 12–22 (2013)

  42. Abd-Alla A.M., Bayones F.S.: Effect of rotation and initial stress on generalized thermoelastic problem in an infinite circular cylinder. Appl. Math. Sci. 5, 2049–2076 (2011)

    MATH  MathSciNet  Google Scholar 

  43. Kumar R., Kansal T.: Effect of rotation on Rayleigh–Lamb waves in an isotropic generalized thermoelastic diffusive plate. J. Appl. Mech. Tech. Phys. 51, 751–761 (2010)

    Article  MATH  Google Scholar 

  44. Othman M.I.A., Song Y.: Reflection of magneto-thermo-elastic waves from an rotating elastic half-space in generalized thermoelasticity under three theories. Mech. Mech. Eng. 15, 5–24 (2011)

    Google Scholar 

  45. Nayak, P., Saha, K.N.: Analysis and design of rotating disks of functional materials of varying thickness. In: Proceedings of the ACMFMS IIT, pp. 461–464. New Delhi, India (2012). ISBN:978-81-8487-248-4

  46. Fahmy M.A.: Implicit–explicit time integration DRBEM for generalized magneto-thermoelasticity problems of rotating anisotropic viscoelastic functionally graded solids. Eng. Anal. Bound. Elem. 37, 107–115 (2013)

    Article  MathSciNet  Google Scholar 

  47. Fahmy M.A.: A three-dimensional generalized magneto-thermo- viscoelastic problem of a rotating functionally graded anisotropic solids with and without energy dissipation. Numer. Heat Transf. Part A Appl. 63, 713–733 (2013)

    Article  Google Scholar 

  48. Fahmy M.A.: Generalized magneto-thermo-viscoelastic problems of rotating functionally graded anisotropic plates by the dual reciprocity boundary element method. J. Therm. Stress. 36, 1–20 (2013)

    Article  MathSciNet  Google Scholar 

  49. Das P., Kanoria M.: Study of finite thermal waves in a magneto-thermoelastic rotating medium. J. Therm. Stress. 37, 405–428 (2014)

    Article  Google Scholar 

  50. Honig G., Hireds U.: A method for the numerical inversion of Laplace transforms. J. Comput. Appl. Math. 10, 113–132 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  51. Roychoudhuri S.K.: Effect of rotation and relaxation times on plane waves in generalized thermoelasticity. J. Elast. 15, 59–68 (1985)

    Article  Google Scholar 

  52. Sinha M., Bera R.K.: Eigenvalue approach to study the effect of rotation and relaxation time in generalized thermoelasticity. Comput. Math. Appl. 46, 783–792 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kanoria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, P., Das, P. & Kanoria, M. Magneto-thermoelastic response in a functionally graded rotating medium due to a periodically varying heat source. Acta Mech 226, 2103–2120 (2015). https://doi.org/10.1007/s00707-015-1301-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1301-y

Keywords

Navigation