Skip to main content
Log in

Variation of cutting forces in machining of f.c.c. single crystals

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, micro-machining of f.c.c. single-crystal materials was investigated based on a hybrid modelling approach combining smoothed particle hydrodynamics and continuum finite element analysis. The numerical modelling was implemented in the commercial software ABAQUS/Explicit by employing a user-defined subroutine VUMAT for a crystal plasticity formulation to gain insight into the underlying mechanisms that drive a plastic response of materials in high deformation processes. The numerical studies demonstrate that cutting force variations in different cutting directions are similar for different f.c.c. crystals even though the magnitudes of the cutting forces are different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okazaki Y., Mishima N., Ashida K.: Microfactory: concept, history, and developments. J. Manuf. Sci. Eng. 126(4), 837–844 (2004)

    Article  Google Scholar 

  2. Masuzawa T.: State of the art of micromachining. CIRP Ann. Manuf. Technol. 49(2), 473–488 (2000)

    Article  Google Scholar 

  3. Zahedi S.A., Demiral M., Roy A., Silberschmidt V.V.: FE/SPH modelling of orthogonal micro-machining of f.c.c. single crystal. Comput. Mater. Sci. 78, 104–109 (2013)

    Article  Google Scholar 

  4. Zahedi S.A., Roy A., Silberschmidt V.V.: Modeling of micro-machining single-crystal f.c.c. metals. Proc. CIRP 8, 346–350 (2013)

    Article  Google Scholar 

  5. Sato M., Kato Y., Aoki S., Ikoma A.: Effects of crystal orientation on the cutting mechanism of the aluminum single crystal: 2nd report: on the (111) plane and the (112) end cutting. Bull. JSME 26(215), 890–896 (1983)

    Article  Google Scholar 

  6. Lee W., Yang W.: Methodology and applications of mesoplasticity in manufacturing sciences. Int. J. Mech. Sci. 35(12), 1079–1095 (1993)

    Article  MATH  Google Scholar 

  7. Lee W.B., To S., Sze Y.K, Cheung C.F.: Effect of material anisotropy on shear angle prediction in metal cutting—a meso-plasticity approach. Int. J. Mech. Sci. 45(10), 1739–1749 (2003)

    Article  MATH  Google Scholar 

  8. Shirakashi T., Yoshino M., Kurashima H.: Study on cutting mechanism of single crystal based on simple shear plane model. Int. J. Jpn. Precis. Eng. 25(2), 96–97 (1991)

    Google Scholar 

  9. Lawson B.L., Kota N., Ozdoganlar O.B.: Effects of crystallographic anistropy on orthogonal micromachining of single-crystal aluminium. Tran. ASME-B-J. Manuf. Sci. Eng. 130(3), 316–319 (2008)

    Google Scholar 

  10. Chunhui J., Jing S., Zhanqiang L., Yachao W.: Comparison of tool–chip stress distributions in nano-machining of mono-crystalline silicon and copper. Int. J. Mech. Sci. 77, 30–39 (2013)

    Article  Google Scholar 

  11. Komanduri R., Chandrasekaran N., Raff L.: MD simulation of exit failure in nanometric cutting. Mater. Sci. Eng. A 311(1), 1–12 (2001)

    Article  Google Scholar 

  12. Cai M.B., Li X.P., Rahman M.: Study of the mechanism of nano-scale ductile mode cutting of silicon using molecular dynamics simulation. Int. J. Mach. Tools Manuf. 47, 75–80 (2007)

    Article  Google Scholar 

  13. Hutchinson J.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. Lond. A. Math. Phys. Eng. Sci. 348, 101–127 (1976)

    Article  MATH  Google Scholar 

  14. Peirce D., Asaro R.J., Needleman A.: An analysis of nonuniform and localized deformation in crystalline solids. Acta. Metal. 30, 1087–1093 (1982)

    Article  Google Scholar 

  15. Huang, Y.: A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program. Harvard University Press, Cambridge (1991)

  16. Kysar, J.: Addendum to a user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program. Mech. Report 178. Division of engineering and applied sciences, Harvard University, Cambridge, MA (1997)

  17. Zahedi, S.A.: Crystal plasticity modelling of machining, Ph.D. thesis, Loughborough University (2014)

  18. Zahedi S.A., Demiral M., Roy A., Babitsky V.I., Silberschmidt V.V.: Indentation in fcc single crystals. Solid State Phenom. 188, 219–225 (2012)

    Article  Google Scholar 

  19. Demiral, M.: Enhanced gradient crystal-plasticity study of size effects in b.c.c. metal, Ph.D. thesis (2012)

  20. Wang Y., Raabe D., Klüber C., Roters F.: Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater. 52(8), 2229–2238 (2004)

    Article  Google Scholar 

  21. Groh S., Marin E., Horstemeyer M., Zbib H.: Multiscale modelling of the plasticity in an aluminum single crystal. Int. J. Plast. 25(8), 1456–1473 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abolfazl Zahedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abolfazl Zahedi, S., Roy, A. & Silberschmidt, V.V. Variation of cutting forces in machining of f.c.c. single crystals. Acta Mech 227, 3–9 (2016). https://doi.org/10.1007/s00707-015-1418-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1418-z

Keywords

Navigation