Skip to main content
Log in

Crack initiation and propagation in ductile specimens with notches: experimental and numerical study

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Failures of components and structures are often related to the presence of notches of different shapes. Damage modelling techniques have been proven capable of modelling the crack initiation and propagation in ductile materials (such as Al alloys). The Gurson–Tvergaard–Needleman (GTN) method and extended finite-element method (XFEM) are compared against original experiments to study the crack initiation and propagation processes in aluminium specimens with different notch shapes (V-shape, U-shape and square). Two regimes are considered in this study: quasi-static and impact uniaxial tensile loading. Results show that the load-bearing capability predicted with the two methods is somewhat lower compared to experiments; still, the crack shapes were predicted correctly, with the exception of the square-notch case, for which XFEM was unable to predict the correct shape due to limitations in the model formulation. This study provides information useful for the design of components with stress raisers that are exposed to different loading regimes and shows limitations in both the GTN- and XFEM-based approaches that in many cases underestimate the load-bearing capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abaqus Documentation, Version 6.13, Dassault Systèmes, Vélizy-Villacoublay, France (2013)

  2. Ali N., Jamshid M.: Simulation of impact energy in functionally graded steels. Comp. Mater. Sci. 50, 1187–1196 (2011)

    Article  Google Scholar 

  3. Anvari M., Liu J., Thaulow C.: Dynamic ductile fracture in aluminum round bars: experiments and simulations. Int. J. Fract. 143, 317–332 (2007)

    Article  Google Scholar 

  4. Champlin J., Zakrajsek J.: Influence of notch severity on the impact fracture behavior of aluminum alloy 7055. Mater. Des. 20, 331–341 (1999)

    Article  Google Scholar 

  5. Gurson A.L.: Continuum theory of ductile rupture by void nucleation and growth: part 1—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  6. He M., Li F., Wang Z.: Forming limit stress diagram prediction of aluminum alloy 5052 based on GTN model parameters determined by in situ tensile test. Chin. J. Aeronaut. 24, 378–386 (2011)

    Article  MathSciNet  Google Scholar 

  7. Kiran R., Khandelwal K.: Gurson model parameters for ductile fracture simulation in ASTM A992 steels. Fatigue Fract. Eng. Mater. Struct. 37, 171–183 (2012)

    Article  Google Scholar 

  8. Kumar S., Singh I.V., Mishra B.K.: Numerical investigation of stable crack growth in ductile materials using XFEM. Proc. Eng. 64, 652–660 (2013)

    Article  Google Scholar 

  9. Moës N., Belytschko T.: Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69, 813–833 (2002)

    Article  Google Scholar 

  10. Moës N., Dolbow J., Belytschko T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  11. Nazari A., Mohandesi J.: Simulation of impact energy in functionally graded steels. Comput. Mater. Sci. 50, 1187–1196 (2011)

    Article  Google Scholar 

  12. Needleman A., Tvergaard V.: An analysis of ductile rupture in notched bars. J. Mech. Phys. Solids 32, 461–490 (1984)

    Article  Google Scholar 

  13. Ruzicka J., Spaniel M., Prantl A., Dzugan J., Kuzelka J., Moravec M.: Identification of ductile damage parameters in the abaqus. Bull. Appl. Mech. 8, 89–92 (2012)

    Google Scholar 

  14. Seabra M.R.R., Cesarde Sa J.M.A., Šuštarič P., Rodič T.: Some numerical issues on the use of XFEM for ductile fracture. Comput. Mech. 50, 611–629 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Seabra M.R.R., Cesarde Sa J.M.A., Šuštarič P., Rodič T.: Damage driven crack initiation and propagation in ductile metals using XFEM. Comput. Mech. 52, 161–179 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sun M., Packer J.A.: Charpy V-notch impact toughness of cold-formed rectangular hollow sections. J. Constr. Steel Res. 97, 114–126 (2014)

    Article  Google Scholar 

  17. Tvergaard V.: On localization in ductile materials containing spherical voids. Int. J. Fract. 18, 237–252 (1980)

    Google Scholar 

  18. Xue Z., Pontin M.G., Zok F.W., Hutchinson J.W.: Calibration procedures for a computational model of ductile fracture. Eng. Fract. Mech. 77, 492–509 (2010)

    Article  Google Scholar 

  19. Zuo J., Sutton M.A., Deng X.: Basic studies of ductile failure processes and implications for fracture prediction. Fatigue Fract. Eng. Mater. Struct. 27, 231–243 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Schiavone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiavone, A., Abeygunawardana-Arachchige, G. & Silberschmidt, V.V. Crack initiation and propagation in ductile specimens with notches: experimental and numerical study. Acta Mech 227, 203–215 (2016). https://doi.org/10.1007/s00707-015-1425-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1425-0

Keywords

Navigation