Skip to main content
Log in

A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates. We exploit a higher-order shear deformation theory in each layer such that the continuity of the displacement and transverse shear stresses at the layer interfaces is ensured. Thanks for enforcing the continuity of the displacement and transverse shear stresses at an inner-laminar layer, the minimum number of variables is retained from the present theory in comparison with other layerwise theories. The method requires only five variables, the same as what obtained from the first- and higher-order shear deformation theories. In comparison with the shear deformation theories based on the equivalent single layer, the present theory is capable of producing a higher accuracy for inner-laminar layer shear stresses. The free boundary conditions of transverse shear stresses at the top and bottom surfaces of the plate are fulfilled without any shear correction factors. The discrete system equations are derived from the Galerkin weak form, and the solution is obtained by isogeometric analysis (IGA). The discrete form requires the C1 continuity of the transverse displacement, and hence NURBS basis functions in IGA naturally ensure this condition. The laminated composite and sandwich plates with various geometries, aspect ratios, stiffness ratios and boundary conditions are studied. The obtained results are compared with the 3D elasticity solution, the analytical as well as numerical solutions based on various plate theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldenvaizer A.N.: Theory of Thin Elastic Shells, International Series of Monograph in Aeronautics and Astronautics. Pergamon Press, New York (1961)

    Google Scholar 

  2. Carrera E.: A study of transverse normal stress effect on vibration of multilayered plates and shell. J. Sound Vib. 225, 803–829 (1999)

    Article  Google Scholar 

  3. Carrera E.: Transverse normal stress effects in multilayered plate. J. Appl. Mech. 66, 1004–1012 (1999)

    Article  Google Scholar 

  4. Reissner E.: The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. Trans. ASME 12, 69–77 (1945)

    MathSciNet  MATH  Google Scholar 

  5. Mindlin R.D.: Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. Trans. ASME 18, 31–38 (1951)

    MATH  Google Scholar 

  6. Ferreira A.J.M., Castro L.M.S., Bertoluzza S.: A high order collocation method for the static and vibration analysis of composite plates using a first-order theory. Compos. Struct. 34, 627–636 (2003)

    Google Scholar 

  7. Ambartsumian S.A.: On the theory of bending plates. Izv Otd Tech Nauk ANSSSR 5, 269–277 (1958)

    Google Scholar 

  8. Reissner E.: On transverse bending of plates including the effects of transverse shear deformation. Int. J. Solids Struct. 25, 495–502 (1975)

    MATH  Google Scholar 

  9. Levinson M.: An accurate simple theory of statics and dynamics of elastic plates. Mech. Res. Commun. 7, 343–350 (1980)

    Article  MATH  Google Scholar 

  10. Reddy J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)

    Article  MATH  Google Scholar 

  11. Nguyen-Xuan, H., Thai, Chien.H., Nguyen-Thoi, T.: Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory. Compos. Part B 55, 558–574 (2013)

  12. Soldatos K.P.: A transverse shear deformation theory for homogenous monoclinic plates. Acta Mech. 94, 195–220 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Touratier M.: An efficient standard plate theory. Int. J. Eng. Sci. 29, 745–752 (1991)

    Article  MATH  Google Scholar 

  14. Arya H., Shimpi R.P., Naik N.K.: A zigzag model for laminated composite beams. Compos. Struct. 56, 21–24 (2002)

    Article  Google Scholar 

  15. Thai, Chien.H., Ferreira, A.J.M., Rabczuk, T., Bordas, S.P.A., Nguyen-Xuan, H.: Isogeometric analysis of laminated composite and sandwich plates using a newinverse trigonometric shear deformation theory. Eur. J.Mech.A/Solids 43, 89–108 (2014)

  16. Karama M., Afaq K.S., Mistou S.: Mechanical behavior of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity. Int. J. Solids Struct. 40, 1525–1546 (2003)

    Article  MATH  Google Scholar 

  17. Aydogdu M.: A new shear deformation theory for laminated composite plates. Compos. Struct. 89, 94–101 (2009)

    Article  Google Scholar 

  18. Senthilnathan N.R., Lim S.P., Lee K.H., Chow S.T.: Buckling of shear-deformable plates. AIAA J. 25, 1268–1271 (1987)

    Article  Google Scholar 

  19. Thai H.T., Choi D.H.: A refined plate theory for functionally graded plates resting on elastic foundation. Compos. Sci. Technol. 71, 1850–1858 (2011)

    Article  Google Scholar 

  20. Srinivas S.: A refined analysis of composite laminates. J. Sound Vib. 30, 495–507 (1973)

    Article  MATH  Google Scholar 

  21. Reddy J.N.: A generalization of two-dimensional theories of laminated composite plates. Commun. Appl. Numer. Methods 3, 173–180 (1987)

    Article  MATH  Google Scholar 

  22. Murakami H.: Laminated composite plate theory with improved in-plane responses. J. Appl. Mech. 53, 661–666 (1986)

    Article  MATH  Google Scholar 

  23. Mau S.T.: A refined laminate plate theory. J. Appl. Mech. 40, 606–607 (1973)

    Article  Google Scholar 

  24. Chou P.C., Corleone J.: Transverse shear in laminated plate theories. Am. Inst. Aeronaut. Astronaut. 11, 1333–1336 (1973)

    Article  Google Scholar 

  25. Di Sciuva M.: An improved shear-deformation theory for moderately thick multilayered shells and plates. J. Appl. Mech. 54, 589–597 (1987)

    Article  MATH  Google Scholar 

  26. Toledano A., Murakami H.: A composite plate theory for arbitrary laminate configuration. J. Appl. Mech. 54, 181–189 (1987)

    Article  MATH  Google Scholar 

  27. Ren J.G.: A new theory of laminated plate. Compos. Sci. Technol. 26, 225–239 (1986)

    Article  Google Scholar 

  28. Di Sciuva M.: Bending, vibration and buckling of simply-supported thick multilayered orthotropic plates: an evaluation of a new displacement model. J. Sound Vib. 105, 425–442 (1986)

    Article  Google Scholar 

  29. Carrera E.: C0 Reissner–Mindlin multilayered plate elements including Zig-Zag and interlaminar stress continuity. Int. J. Numer. Methods Eng. 39, 1797–1820 (1996)

    Article  MATH  Google Scholar 

  30. Carrera E.: Evaluation of layer-wise mixed theories for laminated plate analysis. Am. Inst. Aeronaut. Astronaut. 36, 830–839 (1998)

    Article  Google Scholar 

  31. Rossi R.E., Bambill D.V., Laura A.A.: Vibrations of a rectangular orthotropic plate with a free edge: comparison of analytical and numerical results. Ocean Eng. 25, 521–527 (1998)

    Article  Google Scholar 

  32. Reddy J.N., Robbins D.H. Jr: Theories and computational models for laminated composite laminates. Appl. Mech. Rev. 47, 147–169 (1994)

    Article  Google Scholar 

  33. Roque C.M.C., Ferreira A.J.M., Jorge R.M.N.: Modelling of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions. Compos. Part B 36, 559–572 (2005)

    Article  Google Scholar 

  34. Hughes T.J.R., Cottrell J.A., Bazilevs Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Cottrell J.A., Hughes T.J.R., Bazilevs Y.: Isogeometric Analysis Toward Integration of CAD and FEA. Wiley, Berlin (2009)

    Book  Google Scholar 

  36. Cottrell J.A., Reali A., Bazilevs Y., Hughes T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257–5296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Weeger O., Wever U., Simeon B.: Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations. Nonlinear Dyn. 72, 813–835 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Veiga L., Lovadina C., Reali A.: Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods. Comput. Methods Appl. Mech. Eng. 241–244, 38–51 (2012)

    Article  MathSciNet  Google Scholar 

  39. Shojae S., Izadpanah E., Valizade N., Kiendl J.: Free vibration analysis of thin plates by using a NURBS-based isogeometric approach. Finite Elem. Anal. Des. 61, 23–34 (2012)

    Article  MathSciNet  Google Scholar 

  40. Thai Chien, H., Rabczuk, T., Nguyen-Xuan, H.: Arotation-free isogeometric analysis for composite sandwich thin plates. Int. J. Compos. Mater. 3, 10–18 (2013)

  41. Thai Chien, H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.-H., Nguyen-Thoi, T., Rabczuk, T.: Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS-based isogeometric approach. Int. J. Numer. Methods Eng. 91, 571–603 (2012)

  42. Valizadeh N., Natarajan S., Gonzalez-Estrada O.A., Rabczuk T., Bui T.Q., Bordas S.: NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos. Struct. 99, 309–326 (2013)

    Article  Google Scholar 

  43. Kapoor H., Kapania R.K.: Geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates. Compos. Struct. 94, 3434–3447 (2012)

    Article  Google Scholar 

  44. Thai, Chien H., Nguyen-Xuan, H., Bordas, S.P.A., Nguyen-Thanh, N., Rabczuk, T.: Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mech. Adv. Mater. Struct. 22, 451–469 (2015)

  45. Tran, Loc V., Thai, Chien H., Nguyen-Xuan, H.: An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates. Finite Elem. Anal. Des. 73, 65–76 (2013)

  46. Thai, Chien H., Kulasegaram, S., Tran, Loc V., Nguyen-Xuan, H.: Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach. Comput. Struct. 141, 94–112 (2014)

  47. Guo Y., Nagy A., Grdal Z.: A layerwise theory for laminated composites in the framework of isogeometric analysis. Compos. Struct. 107, 447–457 (2014)

    Article  Google Scholar 

  48. Thai, Chien.H., Ferreira, A.J.M., Carrera, E., Nguyen-Xuan, H.: Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory. Compos. Struct. 104, 196–214 (2013)

  49. Kiendl J., Bletzinger K.U., Linhard J., Wüchner R.: Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198, 3902–3914 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kiendl J., Bazilevs Y., Hsu M., Wüchner R., Bletzinger K.U.: The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199, 2403–2416 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Benson D.J., Bazilevs Y., Hsu M.C., Hughes T.J.R.: Isogeometric shell analysis: the Reissner–Mindlin shell. Comput. Methods Appl. Mech. Eng. 199, 276–289 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Benson D.J., Bazilevs Y., Hsu M.C., Hughes T.J.R.: A large deformation, rotation-free, isogeometric shell. Comput. Methods Appl. Mech. Eng. 200, 1367–1378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Reddy J.N.: Mechanics of Laminated Composite Plates and Shells. Theory and Analysis, 2nd edn. CRC Press, New York (2004)

    Google Scholar 

  54. Pandit M.K., Sheikh A.H., Singh B.N.: An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core. Finite Elem. Anal. Des. 44, 602–610 (2008)

    Article  Google Scholar 

  55. Liew K.M., Huang Y.Q., Reddy J.N.: Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method. Comput. Methods Appl. Mech. Eng. 192, 2203–2222 (2003)

    Article  MATH  Google Scholar 

  56. Chen X.L., Liu G.R., Lim S.P.: An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape. Compos. Struct. 59, 279–289 (2003)

    Article  Google Scholar 

  57. Noor A.K., Peters J.M., Burton W.S.: Three-dimensional solutions for initially stressed structural sandwiches. J. Eng. Mech. (ASCE) 120, 284–303 (1994)

    Article  Google Scholar 

  58. Auricchio F., Veiga F.B., Buffa A., Lovadina C., Reali A., Sangalli G.: A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation. Comput. Methods Appl. Mech. Eng. 197, 160–172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. Pagano N.J.: Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 4, 20–34 (1970)

    Google Scholar 

  60. Reddy J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)

    Article  MATH  Google Scholar 

  61. Akhras G., Cheung M.S., Li W.: Finite strip analysis for anisotropic laminated composite plates using higher-order deformation theory. Comput. Struct. 52, 471–477 (1994)

    Article  MATH  Google Scholar 

  62. Ferreira A.J.M., Roque C.M.C., Martins P.A.L.S.: Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method. Compos. Part B 34, 627–636 (2003)

    Article  Google Scholar 

  63. Ferreira A.J.M.: Analysis of composite plates using a layerwise theory and multiquadrics discretization. Mech. Adv. Mater. Struct. 12, 99–112 (2005)

    Article  Google Scholar 

  64. Ferreira A.J.M., Fasshauer G.E., Batra R.C., Rodrigues J.D.: Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter. Compos. Struct. 86, 328–343 (2008)

    Article  Google Scholar 

  65. Roque C.M.C., Ferreira A.J.M., Jorge R.M.N.: Modelling of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions. Compos. Part B 36, 559–572 (2005)

    Article  Google Scholar 

  66. Wang, X., Shi, G.: A refined laminated plate theory accounting for the third-order shear deformation and interlaminar transverse stress continuity. Appl. Math. Model. 2015. doi:10.1016/j.apm.2015.01.030

  67. Srinivas S.: A refined analysis of composite laminates. J. Sound Vib. 30, 495–507 (1973)

    Article  MATH  Google Scholar 

  68. Pandya B.N., Kant T.: Higher-order shear deformable theories for flexure of sandwich plates-finite element evaluations. Int. J. Solids Struct. 24, 419–451 (1988)

    Article  MATH  Google Scholar 

  69. Mantari, J.L., Oktem, A.S., Soares, C.G.: A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates. Int. J. Solids Struct. 49, 43–53 (2012)

  70. Grover, N., Maiti, D.K., Singh, B.N.: A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates. Compos. Struct. 95, 667–675 (2013)

  71. Chalak H.D., Chakrabarti A., Iqbal M.A., Sheikh A.H.: An improved C0 FE model for the analysis of laminated sandwich plate with soft core. Finite Elem. Anal. Des. 56, 20–31 (2012)

    Article  Google Scholar 

  72. Ramtekkar G.S., Desai Y.M., Shah A.H.: Application of a three dimensional mixed finite element model to the flexure of sandwich plate. Compos. Struct. 81, 2383–2398 (2003)

    Article  Google Scholar 

  73. Kant T., Swaminathan K.: Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory. Compos. Struct. 56, 329–344 (2002)

    Article  Google Scholar 

  74. Khdeir A.: Analysis of symmetric cross-ply elastic plates using a higher-order theory, part II: buckling and free vibration. Compos. Struct. 9, 259–277 (1988)

    Article  Google Scholar 

  75. Reddy J.N.: Mechanics of Laminated Composite Plates. CRC Press, New York (1997)

    MATH  Google Scholar 

  76. Ferreira A.J.M., Castro L.M.S., Bertoluzza S.: A high order collocation method for the static and vibration analysis of composite plates using a first-order theory. Compos. Struct. 89, 424–432 (2009)

    Article  Google Scholar 

  77. Ferreira A.J.M.: A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates. Compos. Struct. 59, 385–392 (2003)

    Article  Google Scholar 

  78. Zhen W., Wanji C.: Free vibration of laminated composite and sandwich plates using global-local higher-order theory. J. Sound Vib. 298, 333–349 (2006)

    Article  Google Scholar 

  79. Wu C.P., Chen W.Y.: Vibration and stability of laminated plates based on a local higher-order plate theory. J. Sound Vib. 177, 503–520 (1994)

    Article  MATH  Google Scholar 

  80. Matsunaga H.: Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory. Compos. Struct. 48, 231–244 (2000)

    Article  Google Scholar 

  81. Cho K.N., Bert C.W., Striz A.G.: Free vibration of laminated rectangular plates analyzed by higher-order individual-layer theory. J. Sound Vib. 145, 429–442 (1991)

    Article  Google Scholar 

  82. Ferreira A.J.M., Fasshauer G.E.: Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method. Comput. Methods Appl. Mech. Eng. 196, 134–146 (2006)

    Article  MATH  Google Scholar 

  83. Noor, A.K., Mathers, M.D.: Shear-flexible finite element method of laminated composite plate. Technical report, NASA (1975)

  84. Liu L., Chua L.P., Ghista D.N.: Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates. Compos. Struct. 78, 58–69 (2007)

    Article  Google Scholar 

  85. Phan N.D., Reddy J.N.: Analysis of laminated composite plates using a higher-order shear deformation theory. Int. J. Numer. Methods Eng. 21, 2201–2219 (1985)

    Article  MATH  Google Scholar 

  86. Khdeir A.A., Librescu L.: Analysis of symmetric cross-ply elastic plates using a higher order theory: Part II: buckling and free vibration. Compos. Struct. 9, 259–277 (1988)

    Article  Google Scholar 

  87. Chakrabarti A., Sheikh A.H.: Buckling of laminated composite plates by a new element based on higher order shear deformation theory. Mech. Compos. Mater. Struct. 10, 303–317 (2003)

    Article  Google Scholar 

  88. Reddy J.N., Phan N.D.: Stability and vibration of isotropic, orthotropic and laminated plates according to a higher order shear deformation theory. J. Sound Vib. 89, 157–170 (1985)

    Article  MATH  Google Scholar 

  89. Sarah B., Kant T.: Two shear deformable finite element models for buckling analysis of skew fiber-reinforced composite and sandwich panels. Compos. Struct. 46, 115–124 (1999)

    Article  Google Scholar 

  90. Cetkovic M., Vuksanovic D.: Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model. Compos. Struct. 88, 219–227 (2009)

    Article  Google Scholar 

  91. Fares M.E., Zenkour A.M.: Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories. Compos. Struct. 44, 279–287 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nguyen-Xuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thai, C.H., Ferreira, A.J.M., Abdel Wahab, M. et al. A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis. Acta Mech 227, 1225–1250 (2016). https://doi.org/10.1007/s00707-015-1547-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1547-4

Keywords

Navigation