Skip to main content
Log in

A general Fourier formulation for vibration analysis of functionally graded sandwich beams with arbitrary boundary condition and resting on elastic foundations

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Free vibration analysis of functionally graded sandwich beams with general boundary conditions and resting on a Pasternak elastic foundation is presented by using strong form formulation based on modified Fourier series. Two types of common sandwich beams, namely beams with functionally graded face sheets and isotropic core and beams with isotropic face sheets and functionally graded core, are considered. The bilayered and single-layered functionally graded beams are obtained as special cases of sandwich beams. The effective material properties of functionally graded materials are assumed to vary continuously in the thickness direction according to power-law distributions in terms of volume fraction of constituents and are estimated by Voigt model and Mori–Tanaka scheme. Based on the first-order shear deformation theory, the governing equations and boundary conditions can be obtained by Hamilton’s principle and can be solved using the modified Fourier series method which consists of the standard Fourier cosine series and several supplemented functions. A variety of numerical examples are presented to demonstrate the convergence, reliability and accuracy of the present method. Numerous new vibration results for functionally graded sandwich beams with general boundary conditions and resting on elastic foundations are given. The influence of the power-law indices and foundation parameters on the frequencies of the sandwich beams is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iyengar K.T.S.R., Raman P.V.: Free vibration of rectangular beams of arbitrary depth. Acta Mech. 32, 249–259 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Thambiratnam D., Zhuge Y.: Free vibration analysis of beams on elastic foundation. Comput. Struct. 60, 971–980 (1996)

    Article  MATH  Google Scholar 

  3. Lai H.Y., Hsu J.C.: An innovative eigenvalue problem solver for free vibration of Euler–Bernoulli beam by using the Adomian decomposition method. Comput. Math. Appl. 56, 3204–3220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shafiei M., Khaji N.: Analytical solutions for free and forced vibrations of a multiple cracked Timoshenko beam subject to a concentrated moving load. Acta Mech. 221, 79–97 (2011)

    Article  MATH  Google Scholar 

  5. Wang Z., Hong M., Xu J.C., Cui H.Y.: Analytical and experimental study of free vibration of beams carrying multiple masses and springs. J. Mar. Sci. Appl. 13, 32–40 (2014)

    Article  Google Scholar 

  6. Chen W.Q., Lü C.F., Bian Z.G.: A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Appl. Math. Model. 28, 877–890 (2004)

    Article  MATH  Google Scholar 

  7. Alshorbagy A.E., Eltaher M.A., Mahmoud F.F.: Free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model. 35, 412–425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Atmane, H.A., Tounsi, A., Meftah, S.A., Belhadj, H.A.: Free vibration behavior of exponential functionally graded beams with varying cross-section. J. Vib. Control 17, 311–318 (2010). doi:10.1177/1077546310370691

  9. Li X.F.: A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler–Bernoulli beams. J. Sound Vib. 318, 1210–1229 (2008)

    Article  Google Scholar 

  10. Sina S.A., Navazi H.M., Haddadpour H.: An analytical method for free vibration analysis of functionally graded beams. Mater. Des. 30, 741–747 (2009)

    Article  Google Scholar 

  11. Shahba A., Attarnejad R., Marvi M.T., Hajilar S.: Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Compos. Part B Eng. 42, 801–808 (2011)

    Article  Google Scholar 

  12. Pradhan K.K., Chakraverty S.: Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Compos. Part B Eng. 51, 175–184 (2013)

    Article  Google Scholar 

  13. Thai H.T., Vo T.P.: Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. Int. J. Mech. Sci. 62, 57–66 (2012)

    Article  Google Scholar 

  14. Şimşek M.: Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl. Eng. Des. 240, 697–705 (2010)

    Article  Google Scholar 

  15. Giunta G., Crisafulli D., Belouettar S., Carrera E.: Hierarchical theories for the free vibration analysis of functionally graded beams. Compos. Struct. 94, 68–74 (2011)

    Article  Google Scholar 

  16. Rajabi K., Kargarnovin M.H., Gharini M.: Dynamic analysis of a functionally graded simply supported Euler–Bernoulli beam subjected to a moving oscillator. Acta Mech. 224, 425–446 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wattanasakulpong N., Prusty B.G, Kelly D.W.: Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams. Int. J. Mech. Sci. 53, 734–743 (2011)

    Article  Google Scholar 

  18. Lü C.F., Chen W.Q., Xu R.Q., Lim C.W.: Semi-analytical elasticity solutions for bi-directional functionally graded beams. Int. J. Solids Struct. 45, 258–275 (2008)

    Article  MATH  Google Scholar 

  19. Chakraborty A., Gopalakrishnan S.: A higher-order spectral element for wave propagation analysis in functionally graded materials. Acta Mech. 172, 17–43 (2004)

    Article  MATH  Google Scholar 

  20. Backström D., Nilsson A.C.: Modelling the vibration of sandwich beams using frequency-dependent parameters. J. Sound Vib. 300, 589–611 (2007)

    Article  Google Scholar 

  21. Banerjee J.R., Sobey A.J.: Dynamic stiffness formulation and free vibration analysis of a three-layered sandwich beam. Int. J Solids Struct. 42, 2181–2197 (2005)

    Article  MATH  Google Scholar 

  22. Banerjee J.R., Cheung C.W., Morishima R., Perera M., Njuguna J.: Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment. Int. J. Solids Struct. 44, 7543–7563 (2007)

    Article  MATH  Google Scholar 

  23. Banerjee J.R.: Free vibration of sandwich beams using the dynamic stiffness method. Comput. Struct. 81, 1915–1922 (2003)

    Article  Google Scholar 

  24. Chen W.Q., Lv C.F., Bian Z.G.: Free vibration analysis of generally laminated beams via state-space-based differential quadrature. Compos. Struct. 63, 417–425 (2004)

    Article  Google Scholar 

  25. Khalili S.M.R., Nemati N., Malekzadeh K., Damanpack A.R.: Free vibration analysis of sandwich beams using improved dynamic stiffness method. Compos. Struct. 92, 387–394 (2010)

    Article  Google Scholar 

  26. Sokolinsky V.S., Von Bremen H.F., Lavoie J.A., Nutt S.R.: Analytical and experimental study of free vibration response of soft-core sandwich beams. J Sandw. Struct. Mater. 6, 239–261 (2004)

    Article  Google Scholar 

  27. Amirani M.C., Khalili S.M.R., Nemati N.: Free vibration analysis of sandwich beam with FG core using the element free Galerkin method. Compos. Struct. 90, 373–379 (2009)

    Article  Google Scholar 

  28. Apetre N.A., Sankar B.V., Ambur D.R.: Analytical modeling of sandwich beams with functionally graded core. J. Sandw. Struct. Mater. 10, 53–74 (2008)

    Article  MATH  Google Scholar 

  29. Rahmani O., Khalili S.M.R., Malekzadeh K., Hadavinia H.: Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core. Compos. Struct. 91, 229–235 (2009)

    Article  Google Scholar 

  30. Chakraborty A., Gopalakrishnan S., Reddy J.N.: A new beam finite element for the analysis of functionally graded materials. Int. J. Mech. Sci. 45, 519–539 (2003)

    Article  MATH  Google Scholar 

  31. Pradhan S.C., Murmu T.: Thermo-mechanical vibration of an FGM sandwich beam under variable elastic foundations using differential quadrature method. J. Sound Vib. 321, 342–362 (2009)

    Article  Google Scholar 

  32. Chakraborty A., Gopalakrishnan S.: A spectrally formulated finite element for wave propagation analysis in functionally graded beams. Int. J. Solids Struct. 40, 2421–2448 (2003)

    Article  MATH  Google Scholar 

  33. Zenkour A.M., Allam M.N.M., Sobhy M.: Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak’s elastic foundations. Acta Mech. 212, 233–252 (2010)

    Article  MATH  Google Scholar 

  34. Vo T.P., Thai H.T., Nguyen T.K., Maheri A., Lee J.: Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Eng. Struct. 64, 12–22 (2014)

    Article  Google Scholar 

  35. Bui T.Q., Khosravifard A., Zhang C. et al.: Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method. Eng. Struct. 47, 90–104 (2013)

    Article  Google Scholar 

  36. Li W.L: Vibration analysis of rectangular plates with general elastic boundary supports. J. Sound Vib. 273, 619–635 (2004)

    Article  Google Scholar 

  37. Beslin O., Nicolas J.: A hierarchical functions set for predicting very high order plate bending modes with any boundary conditions. J. Sound Vib. 202, 633–655 (1997)

    Article  Google Scholar 

  38. Ye T.G., Jin G.Y., Ye X.M., Wang X.R.: A series solution for the vibrations of composite laminated deep curved beams with general boundaries. Compos. Struct. 127, 450–465 (2015)

    Article  Google Scholar 

  39. Su Z., Jin G.Y., Shi S.X., Ye T.G., Jia X.Z.: A unified solution for vibration analysis of functionally graded cylindrical, conical shells and annular plates with general boundary conditions. Int. J. Mech. Sci. 80, 62–80 (2014)

    Article  Google Scholar 

  40. Su Z., Jin G.Y., Wang X.R.: Free vibration analysis of laminated composite and functionally graded sector plates with general boundary conditions. Compos. Struct. 132, 720–736 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyong Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Jin, G., Wang, Y. et al. A general Fourier formulation for vibration analysis of functionally graded sandwich beams with arbitrary boundary condition and resting on elastic foundations. Acta Mech 227, 1493–1514 (2016). https://doi.org/10.1007/s00707-016-1575-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1575-8

Keywords

Navigation