Skip to main content
Log in

A promising approach for modeling biological fibers

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

A Correction to this article was published on 22 June 2018

This article has been updated

Abstract

The final-to-initial stiffness ratio is very large (>100) for many biological fibers, and as such, these materials have been modeled as being strain limiting. We propose an unconventional structure for a stored energy function that leads to a constitutive relation capable of describing this observed strain-limiting behavior. The model can attain infinite stress at a finite strain while storing a finite amount of internal energy. Many biological fibers have a mechanical response that starts out as being compliant and nonlinear, and transitions into one that is stiff and linear. We present a biological fiber model comprised of a strain-limiting fiber (strain being attributed to molecular reconfiguration) loaded in conjunction with a Hookean fiber (strain being attributed to molecular stretch). The model’s parameters are physical, intuitive and readily extracted from a stress/strain curve. Chordæ tendineæ data are used to demonstrate the efficacy of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 22 June 2018

    The last sentence of [1] on page 1612, namely: “In fact no Helmholtz potential for an isotropic material can reduce this 1D equation of Fung.”

References

  1. Viidik A.: Functional properties of collagenous tissues. Int. Rev. Connect. Tissue Res. 6, 127–215 (1973)

    Article  Google Scholar 

  2. Carton R.W., Dainauskas J., Clark J.W.: Elastic properties of single elastic fibers. J. Appl. Physiol. 17, 547–551 (1962)

    Article  Google Scholar 

  3. Hunter, P.J.: Myocardial Constitutive Laws for Continuum Mechanics Models of the Heart, In: S. Sideman, R. Beyar (Eds.), Molecular and Subcellular Cardiology: Effects of Structure and Function, Plenum Press, New York, 1995, Ch. 30, pp. 303–318 (1995)

  4. Köhler T., Vollrath F.: Thread biomechanics in the two orb-weaving spiders Araneus diadematus (Araneae, Araneidae) and Uloborus walckenaerius (Araneae, Uloboridae). J. Exp. Zool. Part A 271, 1–17 (1995)

    Article  Google Scholar 

  5. Bao G., Suresh S.: Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715–725 (2003)

    Article  Google Scholar 

  6. Bustamante C., Marko J.F., Siggia E.D., Smith S.: Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994)

    Article  Google Scholar 

  7. Maksym G.N., Bates J.H.T.: A distributed nonlinear model of lung tissue elasticity. J. Appl. Physiol. 82, 32–41 (1997)

    Article  Google Scholar 

  8. De Gennes, P.G.: Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 60:5030–5042 doi:10.1063/1.1681018 (1974)

  9. Fan R., Sacks M.S.: Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J. Biomech. 47, 2043–2054 (2014)

    Article  Google Scholar 

  10. Lanir Y.: A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J. Biomech. 12, 423–436 (1979)

    Article  Google Scholar 

  11. Lanir Y.: A microstructure model for the rheology of mammalian tendon. J. Biomech. Eng. 102, 332–339 (1980)

    Article  Google Scholar 

  12. Soong T.T., Huang W.N.: A stochastic model for biological tissue elasticity in simple elongation. Biomechanics 6, 451–458 (1973)

    Article  Google Scholar 

  13. Billiar K.L., Sacks M.S.: Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp–part II: a structural constitutive model. J. Biomech. Eng. 122, 327–335 (2000)

    Article  Google Scholar 

  14. Freed A.D., Einstein D.R., Vesely I.: Invariant formulation for dispersed transverse isotropy in aortic heart valves: an efficient means for modeling fiber splay. Biomech. Model. Mechanobiol. 4, 100–117 (2005)

    Article  Google Scholar 

  15. Mitton R.G.: Mechanical properties of leather fibres. J. Soc. Leather Trades Chem. 29, 169–194 (1945)

    Google Scholar 

  16. Belkoff S.M., Haut R.C.: A structural model used to evaluate the changing microstructure of maturing rat skin. J. Biomech. 24, 711–720 (1991)

    Article  Google Scholar 

  17. Beskos D.E., Jenkins J.T.: A mechanical model for mammalian tendon. J. Appl. Mech. 42, 755–758 (1975)

    Article  Google Scholar 

  18. Comninou M., Yannas I.V.: Dependence of stress-strain nonlinearity of connective tissues on the geometry of collagen fibers. J. Biomech. 9, 427–433 (1976)

    Article  Google Scholar 

  19. Freed A.D., Doehring T.C.: Elastic model for crimped collagen fibrils. J. Biomech. Eng. 127, 587–593 (2005)

    Article  Google Scholar 

  20. Kastelic J., Galeski A., Baer E.: The multicomposite structure of tendon. Connect. Tissue Res. 6, 11–23 (1978)

    Article  Google Scholar 

  21. Rajagopal K.R.: On implicit constitutive theories. Appl. Math. 48, 279–319 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rajagopal, K.R., Srinivasa, A.R.: On a class of non-dissipative materials that are not hyperelastic, Proc. R. Soc. Lond. A 465:493–500 (2009)

  23. Sasaki N., Odajima S.: Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J. Biomech. 29, 1131–1136 (1996)

    Article  Google Scholar 

  24. Aaron B.B., Gosline J.M.: Elastin as a random-network elastomer: a mechanical and optical analysis of single elastin fibers. Biopolymers 20, 1247–1260 (1981)

    Article  Google Scholar 

  25. Babu A.R., Byju A.G., Gundiah N.: Biomechanical properties of human ascending thoracic aortic dissections. J. Biomech. Eng. 137, 081013 (2015)

    Article  Google Scholar 

  26. Fung Y.C.: Elasticity of soft tissues in simple elongation. Am. J. Physiol. 28, 1532–1544 (1967)

    Google Scholar 

  27. Freed, A.D.: Soft solids: a primer to the theoretical mechanics of materials, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Basel (2014)

  28. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd Edition, Springer, New York (1993)

  29. Spencer, A.J.M.: Deformations in Fibre-reinforced Materials, Oxford Science Research Papers, Clarendon Press, Oxford (1972)

  30. Carathéodory, C.: Untersuchungen über die Grundlagen der Thermodynamik, Mathematische Annalen 67 (1909) 355–386, translated in: J. Kestin (ed.), The Second Law of Thermodynamics, Dowden, Hutchinson and Ross, Stroudsberg, PA, 1976, pp. 229–256. (1976)

  31. Morgan F.R.: The mechanical properties of collagen fibres: Stress-strain curves. Journal of the International Society of Leather Trades’ Chemists 44, 170–182 (1960)

    Google Scholar 

  32. Fratzl P., Misof K., Zizak I., Rapp G., Amenitsch H., Bernstorff S.: Fibrillar structure and mechanical properties of collagen. J. Struct. Biol. 122, 119–122 (1997)

    Article  Google Scholar 

  33. Liao, J. (2003) Mechanical and structural properties of mitral valve chordæ tendineæ, Ph.D. thesis, Cleveland State University, Cleveland, Ohio (December 2003).

  34. Liao J., Vesely I.: A structural basis for the size-related mechanical properties of mitral valve chordæ tendineæ. Journal of Biomechanics 36, 1125–1133 (2003)

    Article  Google Scholar 

  35. Liao J., Vesely I.: Skewness angle of interfibrillar proteoglycans increases with applied load on mitral valve chordæ tendineæ. Journal of Biomechanics 40, 390–398 (2007)

    Article  Google Scholar 

  36. Sasaki N., Odajima S.: Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. Journal of Biomechanics 29, 655–658 (1996)

    Article  Google Scholar 

  37. Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Boston

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Rajagopal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freed, A.D., Rajagopal, K.R. A promising approach for modeling biological fibers. Acta Mech 227, 1609–1619 (2016). https://doi.org/10.1007/s00707-016-1583-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1583-8

Navigation