Skip to main content
Log in

Equilibrium bifurcation of high-speed axially moving Timoshenko beams

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, equilibrium bifurcations of an axially moving Timoshenko beam are studied in the supercritical region. For the first time, Timoshenko beam theory is applied to investigate nonlinear dynamics of high-speed axially moving structures. The static equilibrium equation is deduced from the governing equation of transverse vibration of the axially moving Timoshenko beam. Two kinds of boundary conditions are considered. The non-trivial equilibrium solutions are analytically determined. Moreover, the equilibrium equations are discretized by using the finite difference method. Therefore, equilibrium configurations are numerically verified by proposing an iterative scheme. This investigation shows that non-trivial equilibrium solutions of Timoshenko beams bifurcate with axially moving speed. By comparing with Euler–Bernoulli beam theory, this study finds that the critical speed, determined by the Timoshenko beam, is remarkably smaller. Nevertheless, the equilibrium deformation of the moving Timoshenko beam is obviously larger. Furthermore, the present work derives the critical speed of the axially moving Timoshenko beam. At last, the effects of the system parameters on the equilibrium bifurcation and the critical speed are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghayesh, M.H., Amabili, M., Païdoussis, M.P.: Nonlinear dynamics of axially moving plates. J. Sound Vib. 332(2), 391–406 (2013)

    Article  Google Scholar 

  2. Wang, Y.Q., Huang, X.B., Li, J.: Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process. Int. J. Mech. Sci. 110, 201–216 (2016)

    Article  Google Scholar 

  3. Yao, M.H., Zhang, W., Zu, J.W.: Multi-pulse chaotic dynamics in non-planar motion of parametrically excited viscoelastic moving belt. J. Sound Vib. 331, 2624–2653 (2012)

    Article  Google Scholar 

  4. Yang, X.D., Zhang, W.: Nonlinear dynamics of axially moving beam with coupled longitudinal-transversal vibrations. Nonlinear Dyn. 78, 2547–2556 (2014)

    Article  Google Scholar 

  5. Farokhi, H., Ghayesh, M.H., Hussain, S.: Three-dimensional nonlinear global dynamics of axially moving viscoelastic beams. J. Vib. Acoust. 138(1), 011007-11 (2015)

    Article  Google Scholar 

  6. Marynowski, K., Kapitaniak, T.: Dynamics of axially moving continua. Int. J. Mech. Sci. 81, 26–41 (2014)

    Article  Google Scholar 

  7. Ding, H., Zu, J.W.: Steady-state responses of pulley-belt systems with a one-way clutch and belt bending stiffness. J. Vib. Acoust. 136, 041006-14 (2014)

    Article  Google Scholar 

  8. Ghayesh, M.H., Amabili, M.: Post-buckling bifurcations and stability of high-speed axially moving beams. Int. J. Mech. Sci. 68(1), 76–91 (2013)

    Article  Google Scholar 

  9. Ding, H.: Steady-state responses of a belt-drive dynamical system under dual excitations. Acta Mech. Sin. 32(1), 156–169 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghayesh, M.H., Khadem, S.E.: Rotary inertia and temperature effects on non-linear vibration, steady-state response and stability of an axially moving beam with time-dependent velocity. Int. J. Mech. Sci. 50, 389–404 (2008)

    Article  MATH  Google Scholar 

  11. Wickert, J.A.: Non-linear vibration of a traveling tensioned beam. Int. J. Nonlinear Mech. 27, 503–517 (1992)

    Article  MATH  Google Scholar 

  12. Hwang, S.J., Perkins, N.C.: Supercritical stability of an axially moving beam part I: model and equilibrium analyses. J. Sound Vib. 154(3), 381–396 (1992)

    Article  MATH  Google Scholar 

  13. Hwang, S.J., Perkins, N.C.: Supercritical stability of an axially moving beam part II: vibration and stability analyses. J. Sound Vib. 154(3), 397–409 (1992)

    Article  MATH  Google Scholar 

  14. Ravindra, B., Zhu, W.D.: Low-dimensional chaotic response of axially accelerating continuum in the supercritical regime. Arch. Appl. Mech. 68, 195–205 (1998)

    Article  MATH  Google Scholar 

  15. Parker, R.G.: Supercritical speed stability of the trivial equilibrium of an axially-moving string on an elastic foundation. J. Sound Vib. 221, 205–219 (1999)

    Article  MATH  Google Scholar 

  16. Pellicano, F., Vestroni, F.: Complex dynamics of high-speed axially moving systems. J. Sound Vib. 258, 31–44 (2002)

    Article  Google Scholar 

  17. Ding, H., Chen, L.Q.: Equilibria of axially moving beams in the supercritical regime. Arch. Appl. Mech. 81(1), 51–64 (2011)

    Article  MATH  Google Scholar 

  18. Ding, H., Zhang, G.C., Chen, L.Q.: Supercritical equilibrium solutions of axially moving beams with hybrid boundary conditions. Mech. Res. Commun. 38(1), 52–56 (2011)

    Article  MATH  Google Scholar 

  19. Ding, H., Chen, L.Q.: Galerkin methods for natural frequencies of high-speed axially moving beams. J. Sound Vib. 329, 3484–3494 (2010)

    Article  Google Scholar 

  20. Zhang, G.C., Ding, H., Chen, L.Q., Yang, S.P.: Supercritical forced response of coupled motion of a nonlinear transporting beam. Nonlinear Dyn. 70(4), 2407–2420 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ding, H., Zhang, G.C., Chen, L.Q., Yang, S.P.: Forced vibrations of supercritically transporting viscoelastic beams. J. Vib. Acoust. 134(5), 051007-11 (2012)

    Article  Google Scholar 

  22. Ding, H., Yan, Q.Y., Zu, J.W.: Chaotic dynamics of an axially accelerating viscoelastic beam in the supercritical regime. Int. J. Bifurc. Chaos 24(5), 1450062-19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghayesh, M.H., Kafiabad, H.A., Reid, T.: Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam. Int. J. Solids Struct. 49, 227–243 (2012)

    Article  Google Scholar 

  24. Lee, U., Kim, J., Oh, H.: Spectral analysis for the transverse vibration of an axially moving Timoshenko beam. J. Sound Vib. 271(3–5), 685–703 (2004)

    Article  MATH  Google Scholar 

  25. Ghayesh, M.H., Balar, S.: Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams. Appl. Math. Model 34(10), 2850–2859 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, L.Q., Tang, Y.Q., Lim, C.W.: Dynamic stability in parametric resonance of axially accelerating viscoelastic Timoshenko beams. J. Sound Vib. 329, 547–565 (2010)

    Article  Google Scholar 

  27. Tang, Y.Q., Chen, L.Q., Yang, X.D.: Nonlinear vibrations of axially moving Timoshenko beams under weak and strong external excitations. J. Sound Vib. 320, 1078–1099 (2009)

    Article  Google Scholar 

  28. Yan, Q.Y., Ding, H., Chen, L.Q.: Periodic responses and chaos behaviors of an axially accelerating viscoelastic Timoshenko beam. Nonlinear Dyn. 78(2), 1577–1591 (2014)

    Article  MathSciNet  Google Scholar 

  29. Yan, Q.Y., Ding, H., Chen, L.Q.: Nonlinear dynamics of an axially moving viscoelastic Timoshenko beam under parametric and external excitations. Appl. Math. Mech. Engl. 36(8), 971–984 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kang, H.J., Zhao, Y.Y., Zhu, H.P.: Out-of-plane free vibration analysis of a cable-arch structure. J. Sound Vib. 332(4), 907–921 (2013)

    Article  Google Scholar 

  31. Zhang, J.R., Guo, Z.X., Zhang, Y., Tang, L., Guan, X.: Inner structural vibration isolation method for a single control moment gyroscope. J. Sound Vib. 361(1), 78–98 (2016)

    Article  Google Scholar 

  32. Ghayesh, M.H., Amabili, M.: Nonlinear dynamics of axially moving viscoelastic beams over the buckled state. Comput. Struct. 112–113, 406–421 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Tan, X., Zhang, GC. et al. Equilibrium bifurcation of high-speed axially moving Timoshenko beams. Acta Mech 227, 3001–3014 (2016). https://doi.org/10.1007/s00707-016-1677-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1677-3

Navigation