Skip to main content
Log in

Eulerian simulations of perforating gun firing in air at atmospheric pressure: scallop geometry influence on design optimization

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Effective perforating gun firing constitutes a key process toward achieving safe and productive wells in hydrocarbon reservoir exploitation. Within this field, the present work pursues a novel modeling approach with two main aims: investigating the physical phenomena involved in the firing of a perforating gun in air at atmospheric pressure, by identifying all key factors stressing the gun carrier; assessing perforating gun performance dependence and optimization on the scallop geometry, in terms of the piercing capability of the carrier outcoming jets and of the gun carrier resistance. This is investigated through challenging 3D Eulerian FEM simulations, displaying coherence with key experimental evidences. The obtained results provide crucial information toward the understanding of the physical phenomena involved in gun firing and of the scallop geometry implications on gun performance. The present simulations set as an advanced tool for perforating gun design and optimization, in comparison with other methodologies like Lagrangian simulations or analytical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu Al-Rub, R.K., Voyiadjis, G.Z.: A finite strain plastic-damage model for high velocity impact using combined viscosity and gradient localization limiters: Part I—theoretical formulation. Int. J. Damage Mech. 15(4), 293–334 (2006)

    Article  Google Scholar 

  2. Al-Hassani, S.T.S., Chen, D., Sarumi, M.: A simple non-local spallation failure model. Int. J. Impact Eng. 19(5–6), 493–501 (1997)

    Article  Google Scholar 

  3. Alia, A., Souli, M.: High explosive simulation using multi-material formulations. Appl. Therm. Eng. 26(10), 1032–1042 (2006)

    Article  Google Scholar 

  4. Allen, D.J., Rule, W.K., Jones, S.E.: Optimizing material strength constants numerically extracted from Taylor impact data. Exp. Mech. 37(3), 333–338 (1997)

    Article  Google Scholar 

  5. Antoun, T., Seaman, L., Curran, D.R., Kanel, G.I., Razorenov, S.V., Utkin, A.V.: “Spall Fracture”, monograph in the series “Shock Wave and High Pressure Phenomena”, originally published as “High-Pressure Shock Compression of Condensed Matter”. In: Davison, L., Horie, Y., Graham, R.A., Chéret, R., Fortov, V.E., Fuqian, J., Gupta, Y.M., Johnson, J.N., Sawaoka, A.B. (Series Editors). Springer. ISBN 0-387-95500-3 (2003)

  6. Asay, J.R., Shahinpoor, M. (eds.): “High-pressure shock compression of solids”, monograph in the series “Shock Wave and High Pressure Phenomena”, originally published as “High-Pressure Shock Compression of Condensed Matter”. In: Graham, R.A., Chéret, R., Eden, G., Fuqian, J., Goldanskii, V.I., Johnson, J.N., Nicol, M.F., Sawaoka, A.B. (Series Editors). Springer. ISBN 0-387-97964-6 (1993)

  7. Atkinson, C., Monmont, F., Zazovsky, A.: Flow performance of perforated completions. Transp. Porous Media 80(2), 305–328 (2009)

    Article  MathSciNet  Google Scholar 

  8. Baker, E.L.: Modeling and optimization of shaped charge liner collapse and jet formation. In: Report ARAED-TR-92019, US Army Armament Research, Development and Engineering Center, Armament Engineering Directorate. Defense Technical Information Center (DTIC), US Department of Defense (1993)

  9. Bathe, K.C.: Finite Element Procedures. Prentice-Hall Inc, Upper Saddle River. ISBN 0-13-301458-4 (1996)

  10. Batsanov, S.S.: “Effects of explosions on materials. Modification and aynthesis under high-pressure shock compression”, monograph in the series “Shock Wave and High Pressure Phenomena”, originally published as “High-Pressure Shock Compression of Condensed Matter”. In: Graham, R.A., Chéret, R., Eden, G., Fuqian, J., Goldanskii, V.I., Johnson, J.N., Nicol, M.F., Sawaoka, A.B. (Series Editors). Springer. ISBN 978-1-4757-3969-5 (1994)

  11. Baudin, G., Serradeill, R.: Review of Jones-Wilkins-Lee equation of state. In: EPJ Web of Conferences, 2010, EDP Sciences (2010)

  12. Baumann, C., Barnard, K., Anbao, L., Williams, H., Fuxiang, Z., Xiangtong, Y., Jianxin, P.: Prediction and reduction of perforating gunshock loads. In: Proceedings of the 6th International Petroleum Technology Conference (IPTC), March 26–28, 2013, Beijing International Convention Center, Beijing, Proceedings, pp. 2565-2573. Society of Petroleum Engineers (SPE), Inc. ISBN 978-162748176-2 (2013)

  13. Baxter, D., Behrmann, L., Grove, B., Williams, H., Heiland, J., Hong, L.J., Khong, C.K., Martin, A., Mishra, V.K., Munro, J., Pizzolante, I., Safiin, N., Suppiah, R.R.: Perforating: when failure is the objective. Oilfield Rev. 21(3), 4–17 (2009)

    Google Scholar 

  14. Behrmann, L.A., Elbel, J.L.: Effect of perforations on fracture initiation. J. Pet. Technol. 43(5), 608–615 (1991)

    Article  Google Scholar 

  15. Behrmann, L.A., Nolte, K.G.: Perforating requirements for fracture stimulations. In: Proceedings of the 1998 SPE International Symposium on Formation Damage Control, February 18–19, 1998, Lafayette, pp. 349–358. Society of Petroleum Engineers (SPE), Inc. (1998)

  16. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Hoboken. ISBN 0-471-98773-5 (2000)

  17. Ben-Dor, G.: Shock Wave Reflection Phenomena, 2nd edn. First published in 1991, monograph in the series “Shock Wave and High Pressure Phenomena”. In: Davison, L., Horie, Y., Graham, R.A., Fortov, V.E., Gupta, Y.M., Asay, R.R., Ben-Dor, G., Takayama, K., Lu, F. (Series Editors). Springer. ISBN 978-3-540-71381-4 (2007)

  18. Benson, D.J.: An efficient, accurate, simple ALE method for nonlinear finite element programs. Comput. Methods Appl. Mech. Eng. 72(3), 305–350 (1989)

    Article  MATH  Google Scholar 

  19. Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99(2–3), 235–394 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Benson, D.J.: A mixture theory for contact in multi-material Eulerian formulations. Comput. Methods Appl. Mech. Eng. 140(1–2), 59–86 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Benson, D.J.: Raven: A Two-Dimensional, Multi-material Eulerian Hydrocode with Heat Transfer (2000)

  22. Benson, D.J.: Volume of fluid interface reconstruction methods for multi-material problems. Appl. Mech. Rev. 55(2), 151–165 (2002)

    Article  Google Scholar 

  23. Benson, D.J., Okazawa, S.: Contact in a multi-material Eulerian finite element formulation. Comput. Methods Appl. Mech. Eng. 193(39–41), 4277–4298 (2004)

    Article  MATH  Google Scholar 

  24. Bigoni, D.: Nonlinear Solid Mechanics. Bifurcation Theory and Material Instability. Cambridge University Press. ISBN 978-1-107-02541-7 (2012)

  25. Birkhoff, G., MacDougall, D.P., Pugh, E.M., Taylor, G.: Explosives with lined cavities. J. Appl. Phys. 19(6), 563–582 (1948)

    Article  Google Scholar 

  26. Børvik, T., Hopperstad, O.S., Berstad, T., Langseth, M.: A computational model of viscoplasticity and ductile damage for impact and penetration. Eur. J. Mech. A/Solids 20(5), 685–712 (2001)

    Article  MATH  Google Scholar 

  27. Burman, J., Schoener-Scott, M., Le, C., Suire, D.: Designing completions after predicting wellbore dynamic-shock loads during perforating. In: Proceedings of the SPE 2011 Brasil Offshore Conference, June 15–17, 2010, Macaé, Rio de Janeiro, pp. 845–858. Society of Petroleum Engineers (SPE), Inc (2011a)

  28. Burman, J., Schoener-Scott, M., Le, C., Suire, D.: Predicting wellbore dynamic-shock loads prior to perforating. In: Proceedings of the SPE Digital Energy Conference and Exhibition, April 19–21, 2011, The Woodlands, pp. 366–378. Society of Petroleum Engineers (SPE), Inc (2011b)

  29. Camacho, G.T., Ortiz, M.: Adaptive Lagrangian modelling of ballistic penetration of metallic targets. Comput. Methods Appl. Mech. Eng. 142(3–4), 269–301 (1997)

    Article  MATH  Google Scholar 

  30. Chapman, D.L.: On the rate of explosion in gases. Philos. Mag. 47(284), 90–104 (1899)

    Article  MATH  Google Scholar 

  31. Chen, D., Yu, Y., Yin, Z., Wang, H., Liu, G., Xie, S.: A modified Cochran–Banner spall model. Int. J. Impact Eng. 31(9), 1106–1116 (2005)

    Article  Google Scholar 

  32. Chéret, R.: “Detonation of Condensed Explosives”, monograph in the series “Shock Wave and High Pressure Phenomena”, originally published as “High-Pressure Shock Compression of Condensed Matter. In: Graham, R.A., Chéret, R., Eden, G., Fuqian, J., Goldanskii, V.I., Johnson, J.N., Nicol, M.F., Sawaoka, A.B. (Series Editors). Springer. ISBN 978-1-4613-9284-2 (1993)

  33. Chéret, R.: Chapman–Jouguet hypothesis 1899–1999: one century between myth and reality. Shock Waves 9(5), 295–299 (1999)

    Article  MATH  Google Scholar 

  34. Chhabildas, L.C., Davison, L., Horie, Y. (eds.) : High-pressure shock compression of solids VIII. The science and technology of high-velocity impact, monograph in the series “Shock Wave and High Pressure Phenomena”, originally published as “High-Pressure Shock Compression of Condensed Matter”. In: Davison, L., Horie, Y., Graham, R.A., Chéret, R., Fortov, V.E., Fuqian, J., Gupta, Y.M., Johnson, J.N., Sawaoka, A.B. (Series Editors). Springer. ISBN 3-540-22866-7 (2005)

  35. Clayton, J.D.: Modeling dynamic plasticity and spall fracture in high density polycrystalline alloys. Int. J. Solids Struct. 42(16–17), 4613–4640 (2005)

    Article  MATH  Google Scholar 

  36. Cochran, S., Banner, D.: Spall studies in uranium. J. Appl. Phys. 48(7), 2729–2737 (1977)

    Article  Google Scholar 

  37. Coleburn, N.L.: Chapman-Jouguet Pressures of Several Pure and Mixed Explosives. Report NOLTR 64-58, US Naval Ordnance Laboratory. Defense Technical Information Center (DTIC), US Department of Defense (1964)

  38. Cooper, P.W.: Explosives Engineering. Wiley, Hoboken. ISBN 0-471-18636-8 (1996)

  39. Cortes, R., Elices, M.: Numerical modelling of ductile spall fracture. Int. J. Impact Eng. 16(2), 237–251 (1995)

    Article  Google Scholar 

  40. Craddock, G.G., Zhang, W., Wight, J., Rodgers, J., Glenn, T.S., Serra, M., Bettenmann, T.: Investigating the dynamic three-dimensional loading effects on perforating guns imposed by shaped charges. In: Proceedings of the International Petroleum Technology Conference, Jan 20–22, 2014, Doha, Ad Dawhah, Qatar, Proceedings, pp. 736–746, International Petroleum Technology Conference. ISBN 978-1-63266-005-3 (2014)

  41. Davison, L.: Fundamentals of Shock Wave Propagation in Solids, monograph in the series “Shock Wave and High Pressure Phenomena”. In: Davison, L., Horie, Y., Graham, R.A., Fortov, V.E., Gupta, Y.M., Asay, R.R., Ben-Dor, G., Takayama, K., Lu, F. (Series Editors). Springer. ISBN 978-3-540-74569-3 (2008)

  42. Davison, L., Grady, D.E., Shahinpoor, M. (eds.): High-pressure shock compression of solids II. Dynamic fracture and fragmentation, monograph in the series “Shock Wave and High Pressure Phenomena”, originally published as “High-Pressure Shock Compression of Condensed Matter”. In: Graham, R.A., Chéret, R., Eden, G., Fuqian, J., Goldanskii, V.I., Johnson, J.N., Nicol, M.F., Sawaoka, A.B. (Series Editors). Springer. ISBN 978-1-4612-2320-7 (1996)

  43. Dehn, J.T.: A unified theory of penetration. Report BRL-TR-2770, US Army Ballistic Research Laboratory, Aberdeen Proving Ground. Defense Technical Information Center (DTIC), US Department of Defense (1986)

  44. Dey, S., Børvik, T., Hopperstad, O.S., Langseth, M.: On the influence of constitutive relation in projectile impact of steel plates. Int. J. Impact Eng. 34(3), 464–486 (2007)

    Article  Google Scholar 

  45. Drake, P.R.: High-energy-density physics fundamentals, inertial fusion, and experimental astrophysics, monograph in the series “Shock Wave and High Pressure Phenomena”. In: Davison, L., Horie, Y., Graham, R.A., Fortov, V.E., Gupta, Y.M., Asay, R.R., Ben-Dor, G., Takayama, K., Lu, F. (Series Editors). Springer. ISBN 978-3-540-29314-9 (2006)

  46. Dremin, A.N.: Toward detonation theory, monograph in the series “Shock Wave and High Pressure Phenomena”, originally published as “High-Pressure Shock Compression of Condensed Matter”. In: Graham, R.A., Chéret, R., Eden, G., Fuqian, J., Goldanskii, V.I., Johnson, J.N., Nicol, M.F., Sawaoka, A.B. (Series Editors). Springer. ISBN 0-387-98672-3 (1993)

  47. Drumheller, D.S.: Introduction to Wave Propagation in Nonlinear Fluids and Solids. Cambridge University Press, Cambridge. ISBN 978-0-521-58313-8 (1998)

  48. Eather, R.F., Griffiths, N.: Some historical aspects of the development of shaped charges. Report 2/84, Ministry of Defence, Royal Armament Research and Development Establishment, Controller of Her Majesty’s Stationery Office (HMSO). Department of Defense, Defense Technical Information Center (DTIC), US (1984)

  49. Elshenawy, T., Li, Q.M.: Influences of target strength and confinement on the penetration depth of an oil well perforator. Int. J. Impact Eng. 54, 130–137 (2013)

    Article  Google Scholar 

  50. Evans, W.M.: The hollow charge effect. Bulletin of the Institution of Mining and Metallurgy, 520. The Institute of Materials, Minerals and Mining (1950)

  51. Fickett, W., Davis, W.C.: Detonation. Theory and Experiment, 2nd edn. Dover Publications, Inc, New York. ISBN 0-486-41456-6 (2000). (First published in 1979)

  52. Field, J.E., Walley, S.M., Proud, W.G., Goldrein, H.T., Siviour, C.R.: Review of experimental techniques for high rate deformation and shock studies. Int. J. Impact Eng. 30(7), 725–775 (1990)

    Article  Google Scholar 

  53. Fortov, V.E., Al’tshuler, L.V., Trunin, R.F., Funtikov, A.I. (eds.): High-pressure shock compression of solids VII. Shock waves and extreme states of matter”, monograph in the series “Shock Wave and High Pressure Phenomena”, originally published as “High-Pressure Shock Compression of Condensed Matter”. In: Davison, L., Horie, Y., Graham, R.A., Chéret, R., Fortov, V.E., Fuqian, J., Gupta, Y.M., Johnson, J.N., Sawaoka, A.B. (Series Editors). Springer. ISBN 978-1-4419-1919-9 (2004)

  54. Fugelso, L.E., Albright, J.N., Langner, G.C., Burns, K.L.: A hypervelocity projectile launcher for well perforation. Int. J. Impact Eng. 10(1–4), 171–184 (1990)

    Article  Google Scholar 

  55. Gambirasio, L.: Large Strain Computational Modeling of High Strain Rate Phenomena in Perforating Gun Devices by Lagrangian/Eulerian FEM Simulations”. Doctoral Thesis, Advisor Rizzi, E., University of Trento/University of Bergamo (2013)

  56. Gambirasio, L., Chiantoni, G., Rizzi, E.: On the consequences of the adoption of the Zaremba-Jaumann objective stress rate in FEM codes. Arch. Comput. Methods Eng. 23(1), 39–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Gambirasio, L., Rizzi, E.: On the calibration strategies of the Johnson–Cook strength model: discussion and applications to experimental data. Mater. Sci. Eng. A 610, 370–413 (2014)

    Article  Google Scholar 

  58. Gambirasio, L., Rizzi, E.: An enhanced Johnson–Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flow. Comput. Mater. Sci. 113, 231–265 (2016)

    Article  Google Scholar 

  59. Glenn, T.S., Serra, M., Rodgers, J.P., Wight, J., Zhang, W., Craddock, G.G., Harive, K.: Investigating the dynamic 3D loading effects on perforating guns imposed by shaped charges—downhole evaluation. In: Proceedings of the International Petroleum Technology Conference, Jan 20–22, 2014, Doha, Ad Dawhah, Qatar, Proceedings, pp. 736–746, International Petroleum Technology Conference. ISBN 978-1-63266-005-3 (2014)

  60. Gooch, W.A., Burkins, M.S., Walters, W.P., Kozhushko, A.A., Sinani, A.B.: Target strength effect on penetration by shaped charge jets. Int. J. Impact Eng. 26(1–10), 243–248 (2001)

    Article  Google Scholar 

  61. Graham, R.A.: Solids under high-pressure shock compression. Mechanics, physics, and chemistry”, monograph in the series “Shock Wave and High Pressure Phenomena”, originally published as “High-Pressure Shock Compression of Condensed Matter”. In: Graham, R.A., Chéret, R., Eden, G., Fuqian, J., Goldanskii, V.I., Johnson, J.N., Nicol, M.F., Sawaoka, A.B. (Series Editors). Springer. ISBN 3-540-97885-2 (1993)

  62. Grove, B.: Theoretical considerations on the penetration of powdered metal jets. Int. J. Impact Eng. 33(1–12), 316–325 (2006)

    Article  Google Scholar 

  63. Grove, B., Heiland, J., Walton, I.: Geologic materials’ response to shaped charge penetration. Int. J. Impact Eng. 35(12), 1563–1566 (2008)

    Article  Google Scholar 

  64. Grove, B., Werner, A., Han, C.: Explosion-induced damage to oilwell perforating gun carriers, paper in ”Structures Under Shock and Impact IX”, monograph in the series “WIT Transactions on The Built Environment”. In: Jones, N., Brebbia, C.A. (eds.) Anthology, pp. 165–176, Number 87, WIT Press. ISBN 978-1-84564-242-6 (2006)

  65. Grüneisen, E.: Theorie des festen zustandes einatomiger elemente. Ann. Phys. 344(12), 257–306 (1912)

    Article  MATH  Google Scholar 

  66. Gui-Xi, L.: The simplified model for predicting shaped charge jet parameters. Propellants Explos. Pyrotech. 20(5), 279–282 (1995)

    Article  Google Scholar 

  67. Gurtin, M.E.: An Introduction to Continuum Mechanics”, monograph in the series “Mathematics in Science and Engineering”. In: Bellman, R. (Series Editor) Number 158. Academic Press, Inc. ISBN 0-12-309750-9 (1981)

  68. Han, C., Du, M.H.: Modelling air perforators for serviceability. In: Proceedings of the 23rd International Symposium on Ballistics, April 16–20, 2007, Tarragona, pp. 1535-1542, The International Ballistics Society (2007)

  69. Han, C., Du, M.H., Ference, B.: Effect of shaped charge case materials on perforating guns. In: Proceedings of the CPS/SPE International Oil and Gas Conference and Exhibition in China, June 8–10, 2010, Beijing, pp. 498–505, Society of Petroleum Engineers (SPE), Inc (2010)

  70. Hawkyard, J.B.: A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil, using energy considerations. Int. J. Mech. Sci. 11(3), 313–333 (1969)

    Article  Google Scholar 

  71. Hawkyard, J.B., Eaton, D., Johnson, W.B.: The mean dynamic yield strength of copper and low carbon steel at elevated temperatures from measurements of the “mushrooming" of flat-ended projectiles. Int. J. Mech. Sci. 10(12), 929–948 (1968)

    Article  Google Scholar 

  72. Held, M.: Experiments of initiation of covered, but unconfined HE charges under different test conditions by shaped charge jets. Propellants Explos. Pyrotech. 12(3), 97–100 (1987)

    Article  Google Scholar 

  73. Held, M.: Shaped charge jet initiation on explosive charges equipped with barriers made up of various materials. Propellants Explos. Pyrotech. 19(6), 290–294 (1994)

    Article  Google Scholar 

  74. Held, M.: Verification of the equation for radial crater growth by shaped charge jet penetration. Int. J. Impact Eng. 17(1–3), 387–398 (1995)

    Article  Google Scholar 

  75. Heuzé, O.: General form of the Mie–Grüneisen equation of state. Int. J. Impact Eng. 340(10), 679–687 (2012)

    Google Scholar 

  76. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14(3), 227–253 (1974)

    Article  MATH  Google Scholar 

  77. Homel, M.A., Guilkey, J.E., Brannon, R.M.: Continuum effective-stress approach for high-rate plastic deformation of fluid-saturated geomaterials with application to shaped-charge jet penetration. Acta Mech. 227(2), 279–310 (2016)

    Article  Google Scholar 

  78. Hopkinson, B.: A method of measuring the pressure produced in the detonation of high explosive or by the impact of bullets. Proc. R. Soc. A Math. Phys. Eng. Sci. 89(612), 411–413 (1914)

    Article  Google Scholar 

  79. Horie, Y., Davison, L., Thadhani, N.N. (eds.): High-pressure shock compression of solids VI. Old paradigms and new challenges”, monograph in the series “Shock Wave and High Pressure Phenomena”, originally published as “High-Pressure Shock Compression of Condensed Matter”. In: Horie, Y., Davison, L., Thadhani, N.N. (Series Editors). Springer. ISBN 0-387-95532-1 (2003)

  80. Hu, H.H., Patankar, N.A., Zhu, M.Y.: Direct numerical simulations of fluid-solid systems using the Arbitrary Lagrangian–Eulerian technique. J. Comput. Phys. 169(2), 427–462 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  81. Hughes, T.J.R.: The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Prentice-Hall Inc. ISBN 0-13-317025-X (1987)

  82. Hussain, G., Hameed, A., Hetherington, J.G., Barton, P.C., Malik, A.Q.: Hydrocode simulation with modified Johnson–Cook model and experimental analysis of explosively formed projectiles. J. Energ. Mater. 31(2), 143–155 (2013)

    Article  Google Scholar 

  83. Jiang, F., Vecchio, K.S.: Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests. Appl. Mech. Rev. 62(6), 1–39 (2009)

    Article  Google Scholar 

  84. Jin, Q., Shigui, Z., Ding, G., Yianjun, Binggui, C.: 3D numerical simulations of penetration of oil-well perforator into concrete targets. In: Proceedings of the 7th International LS-DYNA Users Conference, May 19–21, 2002, Dearborn, Livermore Software Technology Corporation—DYNAmore GmbH (2002)

  85. Jin, W.W., Zhang, Z., Zhang, H.W.: Effect of liner cone angle on perforation and impact process of perforating guns. Chin. J. Comput. Mech. 28(1), 43–48 (2011)

    Google Scholar 

  86. Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, April 19–21, 1983, The Hague, South Holland, The Netherlands, pp. 541–547, The International Ballistics Society (1983)

  87. Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)

    Article  Google Scholar 

  88. Jones, H.: A theory of the dependence of the rate of detonation of solid explosives on the diameter of the charge. Proc. R. Soc. A Math. Phys. Eng. Sci. 189(1018), 415–426 (1947)

    Article  Google Scholar 

  89. Jones, H., Miller, A.R.: The detonation of solid explosives: the equilibrium conditions in the detonation wave-front and the adiabatic expansion of the products of detonation. Proc. R. Soc. A Math. Phys. Eng. Sci. 194(1039), 480–507 (1948)

    Article  Google Scholar 

  90. Kedrinskii, V.K.: Hydrodynamics of explosion. Experiments and models, english translation, monograph in the series “Shock Wave and High Pressure Phenomena”, originally published as “High-Pressure Shock Compression of Condensed Matter”. In: Davison, L., Horie, Y., Graham, R.A., Chéret, R., Fortov, V.E., Fuqian, J., Gupta, Y.M., Johnson, J.N., Sawaoka, A.B. (Series Editors). Springer. ISBN 978-3-540-22481-5 (2005)

  91. Kennedy, D.R.: History of the Shaped Charge Effect. The First 100 Years. D.R. Kennedy & Associates Inc, Mountain View (1990)

    Google Scholar 

  92. Kolsky, H.: An investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc. Sect. B 62(11), 676–700 (1949)

    Article  Google Scholar 

  93. Krehl, P.O.K.: History of Shock Waves, Explosions and Impact. A Chronological and Biographical Reference. Springer. ISBN 978-3-540-30421-0 (2009)

  94. Lee, E.L., Hornig, H.C., Kury, J.W.: Adiabatic Expansion of High Explosive Detonation Products. Report UCRL-50422, Lawrence Radiation Laboratory, University of California. Department of Energy, Office of Scientific and Technical Information (OSTI), US (1968)

  95. Lee, W.H.: Oil well perforator design using 2D Eulerian code. Int. J. Impact Eng. 27(5), 535–559 (2002)

    Article  Google Scholar 

  96. Lee, W.H.: Computer Simulation of Shaped Charge Problems. World Scientific Publishing Co. Pte. Ltd. ISBN 981-256-623-6 (2006)

  97. Lemons, D.S., Lund, C.M.: Thermodynamics of high temperature, Mie–Grüneisen solids. Am. J. Phys. 67(12), 1105–1108 (1999)

    Article  Google Scholar 

  98. Lieb, E.M., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23(1), 22–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  99. Livermore Software Technology Corporation: “LS-DYNA Manuals” (2014)

  100. Loret, B., Rizzi, E.: Strain localization in fluid-saturated anisotropic elastic-plastic porous media with double porosity. J. Mech. Phys. Solids 47(3), 503–530 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  101. Lu, Y., Wang, Z.: Characterization of structural effects from above-ground explosion using coupled numerical simulation. Comput. Struct. 84(28), 1729–1742 (2006)

    Article  Google Scholar 

  102. Lubarda, V.A.: Elastoplasticity Theory, monograph in the series “Mechanical Engineering Series”. In: Kreith, F. (Series Editor). CRC Press LLC. ISBN 0-8493-1138-1 (2002)

  103. Luo, H., Baum, J.D., Löhner, R.: On the computation of multi-material flows using ALE formulation. J. Comput. Phys. 194(1), 304–328 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  104. Mendoza, E.: The equation of state for solids 1843–1926. Eur. J. Phys. 3(3), 181–187 (1982)

    Article  Google Scholar 

  105. Menikoff, R.: Complete Mie–Grüneisen Equation of State. Report LA-UR-12-22592, Los Alamos National Laboratory. Department of Energy, Office of Scientific and Technical Information (OSTI), US (2012)

  106. Meyers, M.A.: Dynamic Behavior of Materials. Wiley. ISBN 0-471-58262-X (1994)

  107. Meyers, M.A., Aimone, C.T.: Dynamic fracture (spalling) of metals. Prog. Mater. Sci. 28(1), 1–96 (1983)

    Article  Google Scholar 

  108. Mie, G.: Zur kinetischen theorie der einatomigen körper. Ann. Phys. 316(8), 657–697 (1903)

    Article  MATH  Google Scholar 

  109. Molinari, J.F.: Finite element simulation of shaped charges. Finite Elem. Anal. Des. 38(10), 921–936 (2002)

    Article  MATH  Google Scholar 

  110. Munroe, C.E.: The applications of explosives. Pop. Sci. Mon. 56, 444–455 (1900)

    Google Scholar 

  111. Murr, L.E., Niou, C.S., Garcia, E.P., Ferreyra, E., Rivas, T.J.M., Sanchez, J.C.: Comparison of jetting-related microstructures associated with hypervelocity impact crater formation in copper targets and copper shaped charges. Mater. Sci. Eng. A 222(2), 118–132 (1997)

    Article  Google Scholar 

  112. Nagayama, K.: An Introduction to the Grüneisen Equation of State and Shock Thermodynamics. Amazon.com Inc, Seattle (2011)

    Google Scholar 

  113. Needham, C.E.: Blast Waves, monograph in the series "Shock Wave and High Pressure Phenomena". In: Graham, R.A., Davison, L., Horie, Y., Ben-Dor, G., Lu, F.K., Thadhani, N.N. (Series Editors). Springer. ISBN 978-3-642-05288-0 (2010)

  114. Novokshanov, R., Ockendon, J.: Elastic-plastic modelling of shaped charge jet penetration. Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2076), 3663–3681 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  115. Pappu, S., Murr, L.E.: Hydrocode and microstructural analysis of explosively formed penetrators. J. Mater. Sci. 37(2), 233–248 (2002)

    Article  Google Scholar 

  116. Quattlebaum, C.C., Borgen, K., Xue, Z., Wilkinson, P.: Optimizing perforating charge design for stimulation. In: Proceedings of the SPE Annual Technical Conference and Exhibition, Oct 8–10, 2012, San Antonio, Proceedings, pp. 1265–1277, Society of Petroleum Engineers (SPE), Inc. ISBN 978-1-62276-415-0 (2012)

  117. Regalbuto, J.A., Gill, B.C.: Computer codes for oilwell-perforator design. SPE Drill. Complet. 12(3), 188–195 (1997)

    Article  Google Scholar 

  118. Rinehart, J.S.: Some quantitative data bearing on the scabbing of metals under explosive attack. J. Appl. Phys. 22(5), 555–560 (1951)

    Article  Google Scholar 

  119. Rinehart, J.S.: Scabbing of metals under explosive attack: multiple scabbing. J. Appl. Phys. 23(11), 1229–1233 (1952)

    Article  Google Scholar 

  120. Rizzi, E., Loret, B.: Constitutive modeling of fluid-saturated porous media with degrading elastic properties. In: Proceedings of the 1st Biot Conference on Poromechanics, Sept 14–16, 1998, Louvain-la-Neuve, Walloon Brabant, pp. 141–146, CRC Press (1998)

  121. Rizzi, E., Loret, B.: Strain localization in fluid-saturated anisotropic elastic-plastic porous media. Int. J. Eng. Sci. 37(2), 235–251 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  122. Scheffler, D.R., Zukas, J.: Practical aspects of numerical simulations of dynamic events: material interfaces. Int. J. Impact Eng. 24(8), 821–842 (2000)

    Article  Google Scholar 

  123. Segletes, S.B.: Thermodynamic stability of the Mie–Grüneisen equation of state, and its relevance to hydrocode computations. J. Appl. Phys. 70(5), 2489–2499 (1991)

    Article  Google Scholar 

  124. Segletes, S.B.: Erratum: thermodynamic stability of the Mie–Grüneisen equation of state, and its relevance to hydrocode computations [J. Appl. Phys. 70, 2489 (1991)]. J. Appl. Phys. 71(2), 1074 (1992)

    Article  Google Scholar 

  125. Shekhar, H.: Theoretical modelling of shaped charges in the last two decades (1990–2010): a review. Cent. Eur. J. Energ. Mater. 9(2), 155–185 (2012)

    Google Scholar 

  126. Souli, M., Benson, D.J. (eds.): Arbitrary Lagrangian-Eulerian and Fluid-Structure Interaction. Numerical Simulation. ISTE Ltd—Wiley, Hoboken. ISBN 978-1-84821-131-5 (2010)

  127. Souli, M., Olovsson, L., Do, I.: ALE and fluid-structure interaction capabilities in LS-DYNA. In: Proceedings of the 7th International LS-DYNA Users Conference, May 19–21, 2002, Dearborn, Michigan, USA, Livermore Software Technology Corporation—DYNAmore GmbH (2002)

  128. Souli, M., Ouahsine, A., Lewin, L.: ALE formulation for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 190(5–7), 659–675 (2000)

    Article  MATH  Google Scholar 

  129. Steinberg, D.J.: The temperature independence of Grüneisen’s gamma at high temperature. J. Appl. Phys. 52(10), 6415–6417 (1981)

    Article  Google Scholar 

  130. Steinberg, D.J.: Constitutive model used in computer simulation of time-resolved, shock-wave data. Int. J. Impact Eng. 5(1–4), 603–611 (1987)

    Article  Google Scholar 

  131. Steinberg, D.J.: Equation of State and Strength Properties of Selected Materials, Second Edition. first published in 1991, Report UCRL-MA-106439 Change 1. Lawrence Livermore National Laboratory, Rensselaer Polytechnic Institute (1996)

  132. Steinberg, D.J., Cochran, S.G., Guinan, M.W.: A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 51(3), 1498–1504 (1980)

    Article  Google Scholar 

  133. Steinberg, D.J., Lund, C.M.: A constitutive model for strain rates from \(10^{-4}\) to \(10^{6} {\text{ s }}^{-1^{\prime \prime }}\). J. Appl. Phys. 65(4), 1528–1533 (1989)

    Article  Google Scholar 

  134. Steinberg, D.J., Sharp Jr., R.W.: Interpretation of shock-wave data for beryllium and uranium with an elastic-viscoplastic constitutive model. J. Appl. Phys. 52(8), 5072–5083 (1981)

    Article  Google Scholar 

  135. Sternberg, H.M.: On the mathematical theory of the Chapman–Jouguet state. Astronaut. Acta 15(5–6), 359–369 (1970)

    Google Scholar 

  136. Swift, R.P., Behrmann, L.A., Halleck, P.M., Krogh, K.E.: Micro-mechanical modeling of perforating shock damage. In: Proceedings of the SPE Formation Damage Control Conference, Feb 18–19, 1998, Lafayette, pp. 381–391, Society of Petroleum Engineers (SPE), Inc (1998)

  137. Tariq, S.M.: Evaluation of flow characteristics of perforations including nonlinear effects with the finite-element method. SPE Prod. Eng. 2(2), 104–112 (1987)

    Article  Google Scholar 

  138. Taylor, G.: The use of flat-ended projectiles for determining dynamic yield stress. I. Theoretical considerations. Proc. R. Soc. A Math. Phys. Eng. Sci. 194(1038), 289–299 (1948)

    Article  Google Scholar 

  139. Teng, X., Wierzbicki, T.: Evaluation of six fracture models in high velocity perforation. Eng. Fract. Mech. 73(12), 1653–1678 (2006)

    Article  Google Scholar 

  140. Tillotson, J.H.: Metallic equations of state for hypervelocity impact. Report GA-3216, General Atomic, General Dynamics, Corporation. Department of Defense, Defense Technical Information Center (DTIC) (1962)

  141. Truesdell, C.A.: The Elements of Continuum Mechanics. Springer, New York. ISBN 0387036830 (1966)

  142. Vitali, E., Benson, D.J.: An extended finite element formulation for contact in multi-material arbitrary Lagrangian–Eulerian calculations. Int. J. Numer. Methods Eng. 67(10), 1420–1444 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  143. Vitali, E., Benson, D.J.: Modeling localized failure with arbitrary Lagrangian–Eulerian methods. Comput. Mech. 49(2), 197–212 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  144. Voyiadjis, G.Z., Abu Al-Rub, R.K.: A finite strain plastic-damage model for high velocity impact using combined viscosity and gradient localization limiters: Part II—numerical aspects and simulations. Int. J. Damage Mech. 15(4), 335–373 (2006)

    Article  Google Scholar 

  145. Walters, W.P.: Influence of material viscosity on the theory of shaped-charge jet formation. Report ARBRL-MR-02941, Ballistic Research Laboratory, Aberdeen Proving Ground, US Army Armament Research and Development Command. Defense Technical Information Center (DTIC), US Department of Defense (1979)

  146. Walters, W.P.: Introduction to Shaped Charges. Report ARL-SR-150, US Army Research Laboratory, Aberdeen Proving Ground. Defense Technical Information Center (DTIC), US Department of Defense (2007)

  147. Walters, W.P.: A brief history of shaped charges. Report ARL-RP-232, US Army Research Laboratory, Aberdeen Proving Ground. Defense Technical Information Center (DTIC), US Department of Defense (2008)

  148. Walters, W.P., Zukas, J.A.: Fundamentals of Shaped Charges. Wiley, Hoboken. ISBN 978-0471621720 (1989)

  149. Weese, R.K., Burnham, A.K., Fontes, A.T.: An investigation of coefficient of thermal expansion, decomposition kinetics, and reaction to various Stimuli. Report UCRL-CONF-210860, Lawrence Livermore National Laboratory (2005)

  150. Whiffin, A.C.: The use of flat-ended projectiles fordetermining dynamic yield stress. II. Tests on various metallicmaterials. Proc. R. Soc. A Math. Phys. Eng. Sci. 194(1038), 300–322 (1948)

    Article  Google Scholar 

  151. Wierzbicki, T., Bao, Y., Lee, Y.W., Bai, Y.: Calibration and evaluation of seven fracture models. Int. J. Mech. Sci. 47(4–5), 719–743 (2005)

    Article  Google Scholar 

  152. Wilkins, M.L.: Calculation of elastic-plastic flow. Report UCRL-7322, Lawrence Radiation Laboratory. Department of Defense, Defense Technical Information Center (DTIC), US (1963)

  153. Wilkins, M.L., Guinan, M.W.: Impact of cylinders on a rigid boundary. J. Appl. Phys. 44(3), 1200–1206 (1973)

    Article  Google Scholar 

  154. Wilkins, M.L., Squier, B., Halperin, B.: Equation of state for detonation products of PBX 9404 and LX04-01. Proc. Combust. Inst. Symp. Int. Combust. 10(1), 769–778 (1965)

    Article  Google Scholar 

  155. Yin, Z.X., Ma, C.M., Li, S.X., Cheng, G.Q.: Perforation of an ultra-high strength steel penetrated by shaped charge jet. Mater. Sci. Eng. A 379(1–2), 443–447 (2004)

    Article  Google Scholar 

  156. Zerilli, F.J., Armstrong, R.W.: Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61(5), 1816–1825 (1987)

    Article  Google Scholar 

  157. Zhang, Z., Liu, Y.L., Hu, H.F., Kang, Z., Li, X.J., Zhang, H.W., Han, X.Q.: Numerical simulation of the perforation process and the parameter controls of the perforating gun. J. Plast. Eng. 15(6), 151–156 (2008)

    Google Scholar 

  158. Zukas, J., Scheffler, D.R.: Practical aspects of numerical simulations of dynamic events: effects of meshing. Int. J. Impact Eng. 24(9), 925–945 (2000)

    Article  Google Scholar 

  159. Zukas, J.A. (ed.): High Velocity Impact Dynamics. Wiley, Hoboken. ISBN 978-0471514442 (1990)

  160. Zukas, J.A.: Impact Dynamics: Theory and Experiment. Report ARBRL-TR-02271, Ballistic Research Laboratory, Aberdeen Proving Ground, US Army Armament Research and Development Command. Defense Technical Information Center (DTIC), US Department of Defense (1980)

  161. Zukas, J.A.: “Introduction to Hydrocodes”, monograph in the series “Studies in Applied Mechanics”. In: Elishakoff, I., Elsevier B.V. (Series Editor) Number 49. ISBN 0-08-044348-6 (2004)

  162. Zukas, J.A., Walters, W.P. (eds) : Explosive Effects and Applications, monograph in the series “Shock Wave and High Pressure Phenomena”, originally published as “High-Pressure Shock Compression of Condensed Matter”. In: Graham, R.A. (Series Editor). Springer. ISBN 0-387-98201-9 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egidio Rizzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambirasio, L., Rizzi, E. & Benson, D.J. Eulerian simulations of perforating gun firing in air at atmospheric pressure: scallop geometry influence on design optimization. Acta Mech 228, 991–1027 (2017). https://doi.org/10.1007/s00707-016-1750-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1750-y

Navigation