Skip to main content
Log in

Modeling diffusion and reaction of sulfates with cement concrete using mixture theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Here mixture theory is used to capture the changes in cement concrete exposed to sodium sulfate till cracks develop. Toward this, the mixture is assumed to be made of eleven constituents of which the sodium sulfate and water move relative to themselves and the remaining nine solid constituents. The nine solid constituents constrained to move together are the eight relevant chemical constituents in concrete that react with sodium sulfate and all the other remaining chemical constituents of concrete that do not react with sulfates. Constitutive assumptions needed to be made within this mixture theory framework are the same as those reported by Gouder and Saravanan (Acta Mech 227(11):3123–3146, 2016). Within this framework of mixture theory, the radial ingress and reaction of sodium sulfate solution with the concrete cylinder sealed at top and bottom, exposed to a constant concentration of sodium sulfate at its outer surface, are formulated. The resulting nonlinear governing differential equations are converted into a system of nonlinear algebraic equations using a forward finite difference scheme in space and a backward difference in time. The nonlinear algebraic equations are solved simultaneously using constrained minimization technique till the water reaches the center of the cylinder. The results obtained for ingress without chemical reactions agree with those predicted by Fick’s equation. The axial expansion of the cylinder and the increase in the value of Young’s modulus of the part of concrete which reacted with sulfates agree qualitatively with the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, A., Hearne, J.A.: Mechanistic model for the durability of concrete barriers exposed to sulfate-bearing groundwaters. Mater. Res. Soc. Symp. Proc. 176, 149–156 (1990)

    Article  Google Scholar 

  2. Bary, B.: Simplified coupled chemo-mechanical modeling of cement pastes behavior subjected to combined leaching and external sulfate attack. J. Numer. Anal. Methods Geomech. 32, 1791–1816 (2008). https://doi.org/10.1002/nag

    Article  MATH  Google Scholar 

  3. Basista, M., Weglewski, W.: Micromechanical modelling of sulphate corrosion in concrete: influence of ettringite forming reaction. Theoret. Appl. Mech. 35(1–3), 29–52 (2008)

    Article  MATH  Google Scholar 

  4. Chatterji, S.: On the applicability of Fick’s second law to chloride ion migration through portland cement concrete. Cem. Concr. Res. 25(2), 299–303 (1995)

    Article  Google Scholar 

  5. Clifton, J.R., Pommersheim, J.M.: Sulfate attack of cementitious materials: volumetric relations and expansions. NISTIR 5390, National Institute of Standards and Technology p. 22 (1994)

  6. Cohen, M.D., Mather, B.: Sulfate attack on concrete—research needs. ACI Mater. J. 88(1), 62–69 (1991)

    Google Scholar 

  7. Ferraris, C., Clifton, J., Stutzman, P., Garbocz, E.: Mechanisms of degradation of portland cement based systems by sulfate attack. In: Scrivener, K., Young, J. (eds.) Mechanisms of Chemical Degradation of Cement Based Systems, pp. 185–192. CRC Press, Boca Raton (1997)

    Google Scholar 

  8. Gouder, C.: Modeling sulfate attack on cement concrete using mixture theory. Ph.D. thesis, Indian Institute of Technology Madras (2017)

  9. Gouder, C., Saravanan, U.: Modeling diffusion of sulfate through concrete using mixture theory. Acta Mech. 227(11), 3123–3146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haecker, C.J., Garboczi, E.J., Bullard, J.W., Bohn, R.B., Sun, Z., Shah, S.P., Voigt, T.: Modeling the linear elastic properties of Portland cement paste. Cem. Concr. Res. 35(10), 1948–1960 (2005)

    Article  Google Scholar 

  11. Hewlett, P.: Lea’s Chemistry of Cement and Concrete. Elsever Science and Technology Books (2004). https://doi.org/10.1016/B978-0-7506-6256-7.50031-X

  12. Hutter, K., Jhnk, K., Svendsen, B.: On interfacial transition conditions in two phase gravity flow. ZAMP Zeitschrift für angewandte Mathematik und Physik 45(5), 746–762 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Krajcinovic, D., Basista, M., Mallick, K., Sumarac, D.: Chemo-micromechanics of brittle solids. J. Mech. Phys. Solids 40(5), 965–990 (1992)

    Article  Google Scholar 

  14. Marchand, J., Odler, I., Skalny, J.: Sulfate Attack on Concrete. Spon Press, London (2002)

    Google Scholar 

  15. Morland, L., Sellers, S.: Multiphase mixtures and singular surfaces. Int. J. Non-Linear Mech. 36(1), 131–146 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Neville, A.: The confused world of sulfate attack on concrete. Cem. Concr. Res. 34(8), 1275–1296 (2004)

    Article  Google Scholar 

  17. NIST: Virtual cement and concrete testing laboratory (2014). http://www.nist.gov/el/building_materials/evcctl.cfm

  18. Ouyang, C.: A damage model for sulfate attack of cement mortars. Cem. Concr. Aggreg. 11(2), 92–99 (1989)

    Article  Google Scholar 

  19. Ouyang, C., Nanni, A., Chang, W.F.: Internal and external sources of sulfate ions in Portland cement mortar: two types of chemical attack. Cem. Concr. Res. 18(5), 699–709 (1988)

    Article  Google Scholar 

  20. Ping, X., Beaudoin, J.J.: Mechanism of sulphate expansion I. Thermodynamic principle of crystallization pressure. Cem. Concr. Res. 22(1), 631–640 (1992)

    Article  Google Scholar 

  21. Santhanam, M.: Studies on sulfate attack: Mechanisms, test methods and modeling. Ph.D. thesis, Purdue University (2001)

  22. Santhanam, M., Cohen, M.D., Olek, J.: Mechanism of sulfate attack: a fresh look: part 1: summary of experimental results. Cem. Concr. Res. 32(6), 915–921 (2002)

    Article  Google Scholar 

  23. Sarkar, S., Mahadevan, S., Meeussen, J., van der Sloot, H., Kosson, D.: Numerical simulation of cementitious materials degradation under external sulfate attack. Cement Concr. Compos. 32(3), 241–252 (2010)

    Article  Google Scholar 

  24. Shazali, M.A., Baluch, M.H., Al-Gadhib, A.H.: Predicting residual strength in unsaturated concrete exposed to sulfate attack. ASCE J. Mater. Civ. Eng. 18(June), 343–354 (2006)

    Article  Google Scholar 

  25. Sun, C., Chen, J., Zhu, J., Zhang, M., Ye, J.: A new diffusion model of sulfate ions in concrete. Constr. Build. Mater. 39, 39–45 (2013)

    Article  Google Scholar 

  26. Taylor, H.F.: Cement Chemistry. Thomas Telford Publishing, London (1997)

    Book  Google Scholar 

  27. Tian, B., Cohen, M.D.: Expansion of alite paste caused by gypsum formation during sulfate attack. J. Mater. Civ. Eng. 12(1), 24–25 (2000)

    Article  Google Scholar 

  28. Tixier, R., Mobasher, B.: Modeling of damage in cement-based materials subjected to external sulfate attack. I: formulation. J. Mater. Civ. Eng. ASCE 15(4), 305–313 (2003)

    Article  Google Scholar 

  29. Tixier, R., Mobasher, B.: Modeling of damage in cement-based materials subjected to external sulfate attack. II: Comparison with experiments. J. Mater. Civ. Eng. ASCE 15(4), 314–322 (2003)

    Article  Google Scholar 

  30. Truesdell, C.: Mechanical basis of diffusion. J. Chem. Phys. 37(10), 2336 (1962)

    Article  Google Scholar 

  31. Tumidajski, P.J., Chan, G.W., Philipose, K.E.: An effective diffusivity for sulfate transport into concrete. Cem. Concr. Res. 25(6), 1159–1163 (1995)

    Article  Google Scholar 

  32. Xi, Y., Bazant, Z.P., Molina, L., Jennings, H.M.: Moisture diffusion in cementitious materials. Adv. Cem. Based Mater. 1(6), 258–266 (1994)

    Article  Google Scholar 

  33. Xiong, L., Yu, L.: Mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions. J. Cent. South Univ. 22(3), 1096–1103 (2015)

    Article  Google Scholar 

  34. Zhang, J., Sun, M., Hou, D., Li, Z.: External sulfate attack to reinforced concrete under drying-wetting cycles and loading condition: numerical simulation and experimental validation by ultrasonic array method. Constr. Build. Mater. 139, 365–373 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Saravanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouder, C., Saravanan, U. Modeling diffusion and reaction of sulfates with cement concrete using mixture theory. Acta Mech 229, 1353–1385 (2018). https://doi.org/10.1007/s00707-017-2035-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2035-9

Navigation