Skip to main content
Log in

Viscoelastic modeling and vibration damping characteristics of hybrid CNTs-CFRP composite shell structures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present article deals with the viscoelastic modeling and dynamic responses of the carbon nanotubes (CNTs)-based carbon fiber-reinforced polymer (CNTs-CFRP) composite spherical shell panels where CNTs are reinforced in the polymer matrix phase. The Mori–Tanaka micromechanics in conjunction with weak interface theory has been developed for the mathematical formulations of the viscoelastic modeling of CNTs-based polymer matrix phase. Further, the strength of material method has been employed to formulate the viscoelastic material behavior of the homogenized hybrid CNTs-CFRP composite materials. An eight-noded shell element with five degrees of freedom per node has been formulated to study the vibration damping characteristics of spherical shell structures made by CNTs-CFRP composite materials. Frequency- and temperature-dependent material properties of such hybrid composite materials have been obtained and analyzed. Impulse and frequency responses of such structures have been performed to study the effects of various important parameters on the material properties and such dynamic responses. Obtained results demonstrate that quick vibration mitigation may be possible using such CNTs-based proposed composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature. 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  2. Qu, J.: The effect of slightly weakened interfaces on the overall elastic properties of composite materials. Mech. Mater. 14, 269–281 (1993). https://doi.org/10.1016/0167-6636(93)90082-3

    Article  Google Scholar 

  3. Li, J., Weng, G.J.: Effect of a viscoelastic interphase on the creep and stress/strain behavior of fiber-reinforced polymer matrix composites. Compos. Part B Eng. 27, 589–598 (1996). https://doi.org/10.1016/1359-8368(95)00040-2

    Article  Google Scholar 

  4. Barai, P., Weng, G.J.: A theory of plasticity for carbon nanotube reinforced composites. Int. J. Plast. 27, 539–559 (2011). https://doi.org/10.1016/j.ijplas.2010.08.006

    Article  MATH  Google Scholar 

  5. Koratkar, N., Wei, B.Q., Ajayan, P.M.: Carbon nanotube films for damping applications. Adv. Mater. 14, 997–1000 (2002). https://doi.org/10.1002/1521-4095(20020705)14:13/14%3c997::AID-ADMA997%3e3.0.CO;2-Y

    Article  Google Scholar 

  6. Koratkar, N.A., Wei, B., Ajayan, P.M.: Multifunctional structural reinforcement featuring carbon nanotube films. Compos. Sci. Technol. 63, 1525–1531 (2003). https://doi.org/10.1016/S0266-3538(03)00065-4

    Article  Google Scholar 

  7. Shi, D.-L., Feng, X.-Q., Huang, Y.Y., Hwang, K.-C., Gao, H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. 126, 250 (2004). https://doi.org/10.1115/1.1751182

    Article  Google Scholar 

  8. Zhou, X., Shin, E., Wang, K.W., Bakis, C.E.: Interfacial damping characteristics of carbon nanotube-based composites. Compos. Sci. Technol. 64, 2425–2437 (2004). https://doi.org/10.1016/j.compscitech.2004.06.001

    Article  Google Scholar 

  9. Rajoria, H., Jalili, N.: Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Compos. Sci. Technol. 65, 2079–2093 (2005). https://doi.org/10.1016/j.compscitech.2005.05.015

    Article  Google Scholar 

  10. Li, K., Gao, X.-L., Roy, A.K.: Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites. Mech. Adv. Mater. Struct. 13, 317–328 (2006). https://doi.org/10.1080/15376490600583931

    Article  Google Scholar 

  11. Putz, K., Krishnamoorti, R., Green, P.F.: The role of interfacial interactions in the dynamic mechanical response of functionalized SWNT-PS nanocomposites. Polymer (Guildf) 48, 3540–3545 (2007). https://doi.org/10.1016/j.polymer.2007.03.072

    Article  Google Scholar 

  12. Suhr, J., Koratkar, N.A.: Energy dissipation in carbon nanotube composites: a review. J. Mater. Sci. 43, 4370–4382 (2008)

    Article  Google Scholar 

  13. Man, Y., Li, Z., Zhang, Z.: Interfacial friction damping characteristics in MWNT-filled polycarbonate composites. Front. Mater. Sci. China 3, 266–272 (2009). https://doi.org/10.1007/s11706-009-0040-1

    Article  Google Scholar 

  14. Huang, Y., Tangpong, X.W.: A distributed friction model for energy dissipation in carbon nanotube-based composites. Commun. Nonlinear Sci. Numer. Simul. 15, 4171–4180 (2010). https://doi.org/10.1016/j.cnsns.2010.01.017

    Article  Google Scholar 

  15. Huang, Y., Tangpong, X.W.: A new friction model for evaluating energy dissipation in carbon nanotube-based composites. In: Luo, ACJ. (eds.) Dynamical Systems, pp. 95–104. Springer, New York (2010)

  16. Khan, S.U., Li, C.Y., Siddiqui, N.A., Kim, J.-K.: Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes. Compos. Sci. Technol. 71, 1486–1494 (2011). https://doi.org/10.1016/j.compscitech.2011.03.022

    Article  Google Scholar 

  17. Li, R., Sun, L.: A micromechanics-based viscoelastic model for nanocomposites with imperfect interface. Int. J. Damage Mech. 22, 967–981 (2013). https://doi.org/10.1177/1056789512469890

    Article  Google Scholar 

  18. Tahan Latibari, S., Mehrali, M., Mottahedin, L., Fereidoon, A., Metselaar, H.S.C.: Investigation of interfacial damping nanotube-based composite. Compos. B Eng. 50, 354–361 (2013). https://doi.org/10.1016/j.compositesb.2013.02.022

    Article  Google Scholar 

  19. Spitas, V., Spitas, C., Michelis, P.: Modeling of the elastic damping response of a carbon nanotube-polymer nanocomposite in the stress–strain domain using an elastic energy release approach based on stick-slip. Mech. Adv. Mater. Struct. 20, 791–800 (2013). https://doi.org/10.1080/15376494.2012.677100

    Article  Google Scholar 

  20. Kim, H.C., Kim, E.H., Lee, I., Byun, J.H., Kim, B.S., Ahn, S.M.: Fabrication of carbon nanotubes dispersed woven carbon fiber/epoxy composites and their damping characteristics. J. Compos. Mater. 47, 1045–1054 (2013). https://doi.org/10.1177/0021998312445513

    Article  Google Scholar 

  21. Alva, A., Raja, S.: Damping characteristics of epoxy-reinforced composite with multiwall carbon nanotubes. Mech. Adv. Mater. Struct. 21, 197–206 (2014). https://doi.org/10.1080/15376494.2013.834091

    Article  Google Scholar 

  22. Bhattacharya, S., Alva, A., Raja, S.: Modeling and characterization of multiwall carbon nanotube reinforced polymer composites for damping applications. Int. J. Comput. Methods Eng. Sci. Mech. 15, 258–264 (2014). https://doi.org/10.1080/15502287.2014.882442

    Article  Google Scholar 

  23. Gardea, F., Glaz, B., Riddick, J., Lagoudas, D.C., Naraghi, M.: Energy dissipation due to interfacial slip in nanocomposites reinforced with aligned carbon nanotubes. ACS Appl. Mater. Interfaces 7, 9725–9735 (2015). https://doi.org/10.1021/acsami.5b01459

    Article  Google Scholar 

  24. Wang, T.-Y., Liu, S.-C., Tsai, J.-L.: Micromechanical stick-slip model for characterizing damping responses of single-walled carbon nanotube nanocomposites. J. Compos. Mater. 50, 57–73 (2016). https://doi.org/10.1177/0021998315570371

    Article  Google Scholar 

  25. Shokrieh, M.M., Ghajar, R., Shajari, A.R.: The effect of time-dependent slightly weakened interface on the viscoelastic properties of CNT/polymer nanocomposites. Compos. Struct. 146, 122–131 (2016). https://doi.org/10.1016/j.compstruct.2016.03.022

    Article  Google Scholar 

  26. Jarali, C.S., Madhusudan, M., Vidyashankar, S., Lu, Y.C.: Modelling of the interfacial damping due to nanotube agglomerations in nanocomposites. Smart Struct. Syst. 19, 57–66 (2017). https://doi.org/10.12989/sss.2017.19.1.057

    Article  Google Scholar 

  27. Swain, A., Roy, T., Nanda, B.K.: Vibration damping characteristics of carbon nanotubes-based thin hybrid composite spherical shell structures. Mech. Adv. Mater. Struct. 24, 95–113 (2017). https://doi.org/10.1080/15376494.2015.1107669

    Article  Google Scholar 

  28. Kundalwal, S.I., Suresh, R.S., Ray, M.C.: Smart damping of laminated fuzzy fiber reinforced composite shells using 1–3 piezoelectric composites. Smart Mater. Struct. 22, 105001 (2013). https://doi.org/10.1088/0964-1726/22/10/105001

    Article  Google Scholar 

  29. Kundalwal, S.I., Meguid, S.A.: Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells. Acta Mech. 226, 2035–2052 (2015). https://doi.org/10.1007/s00707-014-1297-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Kundalwal, S.I., Ray, M.C.: Smart damping of fuzzy fiber reinforced composite plates using 1–3 piezoelectric composites. J. Vib. Control 22, 1526–1546 (2016). https://doi.org/10.1177/1077546314543726

  31. Suresh, R.S., Kundalwal, S.I., Ray, M.C.: Control of large amplitude vibrations of doubly curved sandwich shells composed of fuzzy fiber reinforced composite facings. Aerosp. Sci. Technol. 70, 10–28 (2017). https://doi.org/10.1016/j.ast.2017.07.027

    Article  Google Scholar 

  32. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973). https://doi.org/10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  34. Tanaka, K., Wakashima, K., Mori, T.: Plastic deformation anisotropy and work-hardening of composite materials. J. Mech. Phys. Solids 21, 207–214 (1973). https://doi.org/10.1016/0022-5096(73)90020-3

    Article  Google Scholar 

  35. Weng, G.J.: Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 22, 845–856 (1984). https://doi.org/10.1016/0020-7225(84)90033-8

    Article  MATH  Google Scholar 

  36. Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987). https://doi.org/10.1016/0167-6636(87)90005-6

    Article  Google Scholar 

  37. Qiu, Y.P., Weng, G.J.: On the application of Mori–Tanaka’s theory involving transversely isotropic spheroidal inclusions. Int. J. Eng. Sci. 28, 1121–1137 (1990). https://doi.org/10.1016/0020-7225(90)90112-V

    Article  MathSciNet  MATH  Google Scholar 

  38. Esteva, M., Spanos, P.: Effective elastic properties of nanotube reinforced composites with slightly weakened interfaces. J. Mech. Mater. Struct. 4, 887–900 (2009). https://doi.org/10.2140/jomms.2009.4.887

    Article  Google Scholar 

  39. Swain, A., Baad, S., Roy, T.: Modeling and analyses of thermo-elastic properties of radially grown carbon nanotubes-based woven fabric hybrid composite materials. Mech. Adv. Mater. Struct. (2016). https://doi.org/10.1080/15376494.2016.1227498

    Google Scholar 

  40. Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7, 149–166 (2011). https://doi.org/10.1007/s10999-011-9156-4

    Article  Google Scholar 

  41. Ray, M.C., Kundalwal, S.I.: Effect of carbon nanotube waviness on the load transfer characteristics of short fuzzy fiber-reinforced composite. J. Nanomech. Micromech. 4, A4013010 (2014). https://doi.org/10.1061/(ASCE)NM.2153-5477.0000082

    Article  Google Scholar 

  42. Kundalwal, S.I., Ray, M.C.: Effect of carbon nanotube waviness on the elastic properties of the fuzzy fiber reinforced composites. J. Appl. Mech. 80, 21010 (2013). https://doi.org/10.1115/1.4007722

    Article  Google Scholar 

  43. Smith, W.A., Auld, B.A.: Modeling 1–3 composite piezoelectrics: thickness-mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 40–47 (1991). https://doi.org/10.1109/58.67833

    Article  Google Scholar 

  44. Koiter, W.T.: A consistent first approximation of the general theory of thin elastic shell. In: Proceedings of First IUTAM Symposium, pp. 12 – 33, North Holland, Amsterdam (1960)

  45. Roy, T., Manikandan, P., Chakraborty, D.: Improved shell finite element for piezothermoelastic analysis of smart fiber reinforced composite structures. Finite Elem. Anal. Des. 46, 710–720 (2010). https://doi.org/10.1016/j.finel.2010.03.009

    Article  Google Scholar 

  46. Sk, L., Sinha, P.K.: Improved finite element analysis of multilayered, doubly curved composite shells. J. Reinf. Plast. Compos. 24, 385–404 (2005). https://doi.org/10.1177/0731684405044899

    Article  Google Scholar 

  47. Cura, F., Mura, A., Scarpa, F.: Modal strain energy based methods for the analysis of complex patterned free layer damped plates. J. Vib. Control 18, 1291–1302 (2012). https://doi.org/10.1177/1077546311417277

    Article  Google Scholar 

  48. Madeira, J.F.A., Araújo, A.L., Soares, C.M.M., Soares, C.A.M., Ferreira, A.J.M.: Multiobjective design of viscoelastic laminated composite sandwich panels. Compos. B Eng. 77, 391–401 (2015). https://doi.org/10.1016/j.compositesb.2015.03.025

    Article  Google Scholar 

  49. Rouleau, L., Deü, J.-F., Legay, A.: A comparison of model reduction techniques based on modal projection for structures with frequency-dependent damping. Mech. Syst. Signal Process. 90, 110–125 (2017). https://doi.org/10.1016/j.ymssp.2016.12.013

    Article  Google Scholar 

  50. Barkanov, E.: Transient response analysis of structures made from viscoelastic materials. Int. J. Numer. Methods Eng. 44, 393–403 (1999). https://doi.org/10.1002/(SICI)1097-0207(19990130)44:3%3c393::AID-NME511%3e3.0.CO;2-P

    Article  MATH  Google Scholar 

  51. Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38, 884–907 (2006). https://doi.org/10.1016/j.mechmat.2005.06.029

    Article  Google Scholar 

  52. Reddy, J.N.: Exact solutions of moderately thick laminated shells. J. Eng. Mech. 110, 794–809 (1984). https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(794)

  53. Cytec CYCOM® 934 Epoxy Prepreg Neat Resin. http://www.matweb.com/search/datasheet.aspx?matguid=8606fed685624b248744e1e8141ca5d2

  54. Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E.: Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos. B Eng. 89, 187–218 (2016). https://doi.org/10.1016/j.compositesb.2015.11.016

    Article  Google Scholar 

  55. Ashrafi, B., Hubert, P., Vengallatore, S.: Carbon nanotube-reinforced composites as structural materials for microactuators in microelectromechanical systems. Nanotechnology 17, 4895–4903 (2006). https://doi.org/10.1088/0957-4484/17/19/019

    Article  Google Scholar 

  56. Shen, L., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B. 69, 45414 (2004). https://doi.org/10.1103/PhysRevB.69.045414

    Article  Google Scholar 

  57. Shen, L., Li, J.: Erratum: Transversely isotropic elastic properties of single-walled carbon nanotubes [Phys. Rev. B 69, 045414 (2004)]. Phys. Rev. B. 81, 119902 (2010). https://doi.org/10.1103/PhysRevB.81.119902

    Article  Google Scholar 

  58. Lee, S.-K., Byun, J.-H., Hong, S.H.: Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites. Mater. Sci. Eng. A 347, 346–358 (2003). https://doi.org/10.1016/S0921-5093(02)00614-7

    Article  Google Scholar 

  59. Torayca: T300 Data Sheet. www.toraycfa.com/pdfs/T300DataSheet.pdf

  60. Mura, T.: Anisotropic inclusions. In: Mura, T. (eds.) Micromechanics of Defects in Solids, pp. 129–176. Springer, Dordrecht (1987)

  61. Li, J.Y., Dunn, M.L.: Anisotropic coupled-field inclusion and inhomogeneity problems. Philos. Mag. A. 77, 1341–1350 (1998). https://doi.org/10.1080/01418619808214256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarapada Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, A., Roy, T. Viscoelastic modeling and vibration damping characteristics of hybrid CNTs-CFRP composite shell structures. Acta Mech 229, 1321–1352 (2018). https://doi.org/10.1007/s00707-017-2051-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2051-9

Navigation