Skip to main content
Log in

Necessity of law of balance/equilibrium of moment of moments in non-classical continuum theories for fluent continua

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the non-classical theories for fluent continua, the presence of internal rotation rates and their gradients arising due to the velocity gradient tensor necessitate existence of moment tensor. The Cauchy moment tensor acting on the faces of the deformed tetrahedron (derived using Cauchy principle) and the gradients of the rates of total rotations are a rate of work conjugate pair in addition to the rate of work conjugate Cauchy stress tensor and rate of strain tensor. It is well established that in such non-classical continuum theories the Cauchy stress tensor is non-symmetric and the antisymmetric components of the Cauchy stress tensor are balanced by the gradients of the Cauchy moment tensor, balance of angular momenta balance law. In the non-classical continuum theories incorporating internal rotation rates and conjugate Cauchy moment tensor that are absent in classical continuum theories, the fundamental question is “are the conservation and balance laws used in classical continuum mechanics sufficient to ensure dynamic equilibrium of the deforming volume of matter?" If one only considers conservation and balance laws used in classical continuum theories, then the Cauchy moment tensor is non-symmetric. Thus, requiring constitutive theories for the symmetric as well as non-symmetric Cauchy moment tensors. The work presented in this paper shows that when the thermodynamically consistent constitutive theories are used for the symmetric as well as antisymmetric Cauchy moment tensors, non-physical and spurious solutions result even in simple flows. This suggests that perhaps the additional conjugate tensors resulting due to the presence of internal rotation rates, namely the Cauchy moment tensor and the antisymmetric part of Cauchy stress tensor, must obey some additional law or restriction so that the spurious behavior is precluded. The paper demonstrates that in the non-classical theory with internal rotation rates considered here the balance of moment of moments balance law and the equilibrium of moment of moments are in fact identical. When this balance law is considered, the Cauchy moment tensor becomes symmetric, hence eliminating the constitutive theory for the antisymmetric Cauchy moment tensor and thereby eliminating spurious and non-physical solutions. The necessity of this balance/equilibrium law is established theoretically, its derivation is presented using rate considerations, and its necessity is also demonstrated by a model problem using thermoviscous incompressible fluid as an example. The findings reported in this paper hold for all fluent continua, compressible as well as incompressible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Surana, K.S., Joy, A.D., Reddy, J.N.: Non-classical continuum theory for solids incorporating internal rotations and rotations of Cosserat theories. Contin. Mech. Thermodyn. 29(2), 665–698 (2017)

  2. Surana, K.S., Joy, A.D., Reddy, J.N.: Non-classical continuum theory for fluids incorporating internal and Cosserat rotation rates. Contin. Mech. Thermodyn. (2017). https://doi.org/10.1007/s00161-017-0579-5

  3. Surana, K.S., Powell, M.J., Reddy, J.N.: A more complete thermodynamic framework for fluent continua. J. Therm. Eng. 1(1), 14–30 (2015)

    Google Scholar 

  4. Surana, K.S., Powell, M.J., Reddy, J.N.: Ordered rate constitutive theories for internal polar thermofluids. Int. J. Math. Sci. Eng. Appl. 9(3), 51–116 (2015)

    Google Scholar 

  5. Surana, K.S., Long, S.W., Reddy, J.N.: Rate constitutive theories of orders \(n\) and \({}^1\!n\) for internal polar non-classical thermofluids without memory. Appl. Math. 7, 2033–2077 (2016)

    Article  Google Scholar 

  6. Surana, K.S., Powell, M.J., Reddy, J.N.: A more complete thermodynamic framework for solid continua. J. Therm. Eng. 1(1), 1–13 (2015)

    Article  Google Scholar 

  7. Surana, K.S., Reddy, J.N., Nunez, D., Powell, M.J.: A polar continuum theory for solid continua. Int. J. Eng. Res. Ind. Appl. 8(2), 77–106 (2015)

    Google Scholar 

  8. Surana, K.S., Powell, M.J., Reddy, J.N.: Constitutive theories for internal polar thermoelastic solid continua. J. Pure Appl. Math. Adv. Appl. 14(2), 89–150 (2015)

    Article  Google Scholar 

  9. Surana, K.S., Joy, A.D., Reddy, J.N.: A non-classical internal polar continuum theory for finite deformation of solids using first Piola–Kirchhoff stress tensor. J. Pure Appl. Math. Adv. Appl. 16(1), 1–41 (2016)

    Article  Google Scholar 

  10. Surana, K.S., Joy, A.D., Reddy, J.N.: A non-classical internal polar continuum theory for finite deformation and finite strain in solids. Int. J. Pure Eng. Math. 4(2), 59–97 (2016)

    Google Scholar 

  11. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909)

    MATH  Google Scholar 

  12. Voigt, W.: Theoretische Studien über die Wissenschaften zu Elastizitätsverhältnisse der Krystalle. Abhandl. Ges. Göttingen 34 (1887)

  13. Voigt, W.: Über Medien ohne innere Kräfte und eine durch sie gelieferte mechanische Deutung der Maxwell-Hertzschen Gleichungen. Göttingen Abhandl. pp. 72–79 (1894)

  14. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2(2), 205–217 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16(1), 1–18 (1966)

    MathSciNet  Google Scholar 

  16. Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  17. Eringen, A.C.: Microcontinuum Field Theories II: Fluent Media. Springer, New York (2001)

    MATH  Google Scholar 

  18. Eringen, A.C.: Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1962)

    Google Scholar 

  19. Prager, W.: Strain hardening under combined stresses. J. Appl. Phys. 16, 837–840 (1945)

    Article  MathSciNet  Google Scholar 

  20. Reiner, M.: A mathematical theory of dilatancy. Am. J. Math. 67, 350–362 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  21. Todd, J.A.: Ternary quadratic types. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 399–456 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rivlin, R.S., Ericksen, J.L.: Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955)

    MathSciNet  MATH  Google Scholar 

  23. Rivlin, R.S.: Further remarks on the stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 681–702 (1955)

    MathSciNet  MATH  Google Scholar 

  24. Wang, C.C.: On representations for isotropic functions, Part I. Arch. Ration. Mech. Anal. 33, 249 (1969)

    Article  Google Scholar 

  25. Wang, C.C.: On representations for isotropic functions, Part II. Arch. Ration. Mech. Anal. 33, 268 (1969)

    Article  Google Scholar 

  26. Wang, C.C.: A new representation theorem for isotropic functions, part I and part II. Arch. Ration. Mech. Anal. 36, 166–223 (1970)

    Article  Google Scholar 

  27. Wang, C.C.: Corrigendum to ‘Representations for isotropic functions’. Arch. Ration. Mech. Anal. 43, 392–395 (1971)

    Article  Google Scholar 

  28. Smith, G.F.: On a fundamental error in two papers of C.C. Wang, ‘On representations for isotropic functions, part I and part II’. Arch. Ration. Mech. Anal. 36, 161–165 (1970)

    Article  MATH  Google Scholar 

  29. Smith, G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9, 899–916 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  30. Spencer, A.J.M., Rivlin, R.S.: The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Ration. Mech. Anal. 2, 309–336 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  31. Spencer, A.J.M., Rivlin, R.S.: Further results in the theory of matrix polynomials. Arch. Ration. Mech. Anal. 4, 214–230 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  32. Spencer, A.J.M.: Treatise on continuum physics, I. In: Eringen, A.C. (ed.) Theory of Invariants, vol. 3. Academic Press, London (1971)

    Google Scholar 

  33. Boehler, J.P.: On irreducible representations for isotropic scalar functions. J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 57, 323–327 (1977)

    MathSciNet  MATH  Google Scholar 

  34. Zheng, Q.S.: On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. Int. J. Eng. Sci. 31, 1013–1024 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zheng, Q.S.: On transversely isotropic, orthotropic and relatively isotropic functions of symmetric tensors, skew-symmetric tensors, and vectors. Int. J. Eng. Sci. 31, 1399–1453 (1993)

    Article  MATH  Google Scholar 

  36. Hadjesfandiari, A.R., Hajesfandiari, A., Dargush, G.F.: Skew-symmetric coupled-stress fluid mechanics. Acta Mech. 226, 871–895 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bujurke, N.M., Patil, H.P., Bhavi, S.G.: Porous slider bearing with couple stress fluid. Acta Mech. 85, 99–113 (1990)

    Article  Google Scholar 

  38. Bujurke, N.M., Naduvinamani, N.B.: On the performance of narrow porous journal bearing lubricated with couple stress fluid. Acta Mech. 86, 179–191 (1991)

    Article  MATH  Google Scholar 

  39. Hiremath, P.S., Patil, P.M.: Free convection effects on the oscillatory flow of a couple stress fluid through a porous medium. Acta Mech. 98, 143–158 (1993)

    Article  MATH  Google Scholar 

  40. Ma, H.M., Gao, X.L., Reddy, J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  41. Mani, R.: Creeping flow induced by a spinning sphere including couple stresses. Acta Mech. 18, 81–88 (1973)

    Article  MATH  Google Scholar 

  42. Li, W,-L., Chu, H,-M.: Modified Reynolds equation for coupled stress fluids—a porous media model. Acta Mech. 171, 189–202 (2004)

  43. Steinmann, P., Stein, E.: A unifying treatise of variational principles for two types of micropolar continua. Acta Mech. 121, 215–232 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Erdogan, M.E.: On a non-Newtonian fluid. Acta Mech. 30, 79–88 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  46. Surana, K.S.: Advanced Mechanics of Continua. CRC/Taylor and Francis, Boca Raton (2015)

    MATH  Google Scholar 

  47. Eringen, A.C.: Mechanics of Continua. Wiley, Hoboken (1967)

    MATH  Google Scholar 

  48. Surana, K.S., Reddy, J.N.: The Finite Element Method for Boundary Value Problems: Mathematics and Computations. CRC/Taylor and Francis, Boca Raton (2016). (In Press)

    Google Scholar 

Download references

Acknowledgements

The support provided by the first and the third authors university distinguished professorships is gratefully acknowledged during the course of this research. The financial support provided to the second author by the department of mechanical engineering and the school of engineering is also acknowledged. The computational infrastructure of the Computational Mechanics Laboratory of the mechanical engineering department has been instrumental in performing the numerical studies presented in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Surana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surana, K.S., Long, S.W. & Reddy, J.N. Necessity of law of balance/equilibrium of moment of moments in non-classical continuum theories for fluent continua. Acta Mech 229, 2801–2833 (2018). https://doi.org/10.1007/s00707-018-2143-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2143-1

Navigation