Skip to main content

Advertisement

Log in

Ordered rate constitutive theories for thermoviscoelastic solids without memory incorporating internal and Cosserat rotations

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The work in this paper is based on a non-classical continuum theory in the Lagrangian description for thermoviscoelastic solids without memory in which the conservation and balance laws are derived by incorporating internal rotations (\({}_i \pmb {\varvec{{\varTheta } }}\)) arising from the Jacobian of deformation (\( \pmb {\varvec{J }}\)), as well as Cosserat rotations (\({}_e \pmb {\varvec{{\varTheta } }}\)) at a material point. Such non-classical solids have additional energy storage due to rotations and additional dissipation due to rotation rates compared to classical continuum theories. Rotations \({}_i \pmb {\varvec{{\varTheta } }}\) are completely defined by \( \pmb {\varvec{J }}\), whereas displacements \( \pmb {\varvec{u }}\) and Cosserat rotations \({}_e \pmb {\varvec{{\varTheta } }}\) are degrees of freedom at each material point. When \({}_i \pmb {\varvec{{\varTheta } }}\) and \({}_e \pmb {\varvec{{\varTheta } }}\) are resisted by the deforming matter, conjugate moments arise, which together with (\({}_i \pmb {\varvec{{\varTheta } }},{}_e \pmb {\varvec{{\varTheta } }}\)) and (\({}_i\overset{\,\text{. }}{ \pmb {\varvec{{\varTheta } }}},{}_e\overset{\,\text{. }}{ \pmb {\varvec{{\varTheta } }}}\)) result in additional work and rate of work. This paper utilizes thermodynamic framework for non-classical solids derived based on internal as well as Cosserat rotations and presents a thermodynamically consistent derivation of the constitutive theories that incorporate the aforementioned deformation physics. The constitutive theories are derived using the conditions resulting from the entropy inequality in conjunction with the representation theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voigt, W.: Theoretische Studien über die Wissenschaften zu Elastizitätsverhältnisse der Krystalle. Abhandl. Ges. Göttingen 34, 3–51 (1887)

    Google Scholar 

  2. Voigt, W.: Über Medien ohne innere Kräfte und eine durch sie gelieferte mechanische Deutung der Maxwell-Hertzschen Gleichungen. Göttingen Abhandl. 40, 72–79 (1894)

    MATH  Google Scholar 

  3. Cosserat, E., Cosserat, F.: Théorie des Corps Déformables. Hermann, Paris (1909)

    MATH  Google Scholar 

  4. Günther, W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandl. Braunschweig. Wiss. Ges. 10, 195–213 (1958)

    MATH  Google Scholar 

  5. Grioli, G.: Elasticità Asimmetrica. Ann. Mat. Pura Appl. 50(1), 389–417 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aero, E.L., Kuvshinskii, E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Sov. Phys. Solid State 2, 1272–1281 (1961)

    MathSciNet  Google Scholar 

  7. Schäfer, H.: Versuch einer Elastizitätstheorie des Zweidimensionalen Ebenen Cosserat-Kontinuums. In: Tollmien, W. (ed.) Miszellaneen der Angewandten Mechanik, pp. 277–292. Verlag GMBH, Weinheim (1962)

    Google Scholar 

  8. Truesdell, C.A., Toupin, R.A.: The classical field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. 3. Springer, Berlin (1960)

    Google Scholar 

  9. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koiter, W.T.: Couple stresses in the theory of elasticity, I and II. Proc. Ser. B Koninklijke Nederlandse Akademie van Wetenschappen 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  12. Eringen, A.C.: Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1962)

    Google Scholar 

  13. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids—I. Int. J. Eng. Sci. 2(2), 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids—II. Int. J. Eng. Sci. 2(2), 389–404 (1964)

    MATH  Google Scholar 

  15. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2(2), 205–217 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eringen, A.C.: Mechanics of micromorphic materials. In: Görtler, H. (ed.) Proceeding of 11th International Congress of Applied Mechanics, Munich, pp. 131–138. Springer, Berlin (1964)

    Google Scholar 

  17. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17(2), 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mindlin, R.D.: Stress functions for a Cosserat continuum. Int. J. Solids Struct. 1, 265–271 (1965)

    Article  Google Scholar 

  20. Brand, M., Rubin, M.B.: A constrained theory of a Cosserat point for the numerical solution of dynamic problems of non-linear elastic rods with rigid cross-sections. Int. J. Non-linear Mech. 42, 216–232 (2007)

    Article  Google Scholar 

  21. Cao, D.Q., Tucker, R.W.: Nonlinear dynamics of elastic rods using the Cosserat theory: modelling and simulation. Int. J. Solids Struct. 45, 460–477 (2008)

    Article  MATH  Google Scholar 

  22. Riahi, A., Curran, J.H.: Full 3D finite element Cosserat formulation with application in layered structures. Appl. Math. Model. 33, 3450–3464 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sansour, C.: A unified concept of elastic viscoplastic Cosserat and micromorphic continua. J. Phys. IV Fr. 8, 341–348 (1998)

    Article  Google Scholar 

  24. Sansour, C., Skatulla, S.: A strain gradient generalized continuum approach for modelling elastic scale effects. Comput. Methods Appl. Mech. Eng. 198, 1401–1412 (2009)

    Article  MATH  Google Scholar 

  25. Sansour, C., Skatulla, S., Zbib, H.: A formulation for the micromorphic continuum at finite inelastic strains. Int. J. Solids Struct. 47, 1546–1554 (2010)

    Article  MATH  Google Scholar 

  26. Varygina, M.P., Sadovskaya, O.V., Sadovskii, V.M.: Resonant properties of moment Cosserat continuum. J. Appl. Mech. Tech. Phys. 51(3), 405–413 (2010)

    Article  MATH  Google Scholar 

  27. Nikabadze, M.U.: Relation between the stress and couple-stress tensors in the microcontinuum theory of elasticity. Mosc. Univ. Mech. Bull. 66(6), 141–143 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ieşan, D.: Deformation of porous Cosserat elastic bars. Int. J. Solids Struct. 48, 573–583 (2011)

    Article  MATH  Google Scholar 

  29. Jung, P., Leyendecker, S., Linn, J., Ortiz, M.: A discrete mechanics approach to the Cosserat rod theory—Part 1: static equilibria. Int. J. Numer. Meth. Eng. 85, 31–60 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Alonso-Marroquín, F.: Static equations of the Cosserat continuum derived from intra-granular stresses. Granul. Matter 13, 189–196 (2011)

    Article  Google Scholar 

  31. Chiriţă, S., Ghiba, I.D.: Rayleigh waves in Cosserat elastic materials. Int. J. Eng. Sci. 54, 117–127 (2012)

    MathSciNet  Google Scholar 

  32. Cao, D.Q., Song, M.T., Tucker, R.W., Zhu, W.D., Liu, D.S., Huang, W.H.: Dynamic equations of thermoelastic Cosserat rods. Commun. Nonlinear Sci. Numer. Simul. 18, 1880–1887 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Addessi, D., De Bellis, M.L., Sacco, E.: Micromechanical analysis of heterogeneous materials subjected to overall Cosserat strains. Mech. Res. Commun. 54, 27–34 (2013)

    Article  Google Scholar 

  34. Skatull, S., Sansour, C.: A formulation of a Cosserat-like continuum with multiple scale effects. Comput. Mater. Sci. 67, 113–122 (2013)

    Article  Google Scholar 

  35. Liu, Q.: Hill’s lemma for the average-field theory of Cosserat continuum. Acta Mech. 224, 851–866 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Del Piero, G.: A rational approach to Cosserat continua, with application to plate and beam theories. Mech. Res. Commun. 58, 97–104 (2014)

    Article  Google Scholar 

  37. Genovese, D.: A two-director Cosserat rod model using unconstrained quaternions. Eur. J. Mech. A Solids 43, 44–57 (2014)

    Article  MathSciNet  Google Scholar 

  38. Huang, W., Sloan, S.W., Sheng, D.: Analysis of plane Couette shear test of granular media in a Cosserat continuum approach. Mech. Mater. 69, 106–115 (2014)

    Article  Google Scholar 

  39. Surana, K.S., Powell, M.J., Reddy, J.N.: A more complete thermodynamic framework for solid continua. J. Therm. Eng. 1(1), 1–13 (2015)

    Article  Google Scholar 

  40. Surana, K.S., Reddy, J.N., Nunez, D., Powell, M.J.: A polar continuum theory for solid continua. Int. J. Eng. Res. Ind. Appl. 8(2), 77–106 (2015)

    Google Scholar 

  41. Surana, K.S., Powell, M.J., Reddy, J.N.: A more complete thermodynamic framework for fluent continua. J. Therm. Eng. 1(1), 14–30 (2015)

    Google Scholar 

  42. Surana, K.S., Powell, M.J., Reddy, J.N.: A polar continuum theory for fluent continua. Int. J. Eng. Res. Ind. Appl. 8(2), 107–146 (2015)

    Google Scholar 

  43. Surana, K.S., Powell, M.J., Reddy, J.N.: Constitutive theories for internal polar thermoelastic solid continua. J. Pure Appl. Math. Adv. Appl. 14(2), 89–150 (2015)

    Article  Google Scholar 

  44. Surana, K.S., Powell, M.J., Reddy, J.N.: Ordered rate constitutive theories for internal polar thermofluids. Int. J. Math. Sci. Eng. Appl. 9(3), 51–116 (2015)

    Google Scholar 

  45. Surana, K.S., Joy, A.D., Reddy, J.N.: A non-classical internal polar continuum theory for finite deformation and finite strain in solids. Int. J. Pure Appl. Math. 4, 59–97 (2016)

    Google Scholar 

  46. Surana, K.S., Joy, A.D., Reddy, J.N.: A non-classical internal polar continuum theory for finite deformation of solids using first Piola-Kirchhoff stress tensor. J. Pure Appl. Math. Adv. Appl. 16(1), 1–41 (2016)

    Article  Google Scholar 

  47. Surana, K.S., Joy, A.D., Reddy, J.N.: A non-classical continuum theory for solids incorporating internal rotations and rotations of Cosserat theories. Continuum Mech. Thermodyn. 29(2), 665–698 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Surana, K.S., Joy, A.D., Reddy, J.N.: A non-classical continuum theory for fluids incorporating internal and Cosserat rotation rates. Continuum Mech. Thermodyn. 29(6), 1249–1289 (2017)

    Article  MathSciNet  Google Scholar 

  49. Reiner, M.: A mathematical theory of dilatancy. Am. J. Math. 67, 350–362 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  50. Todd, J.A.: Ternary quadratic types. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 399–456 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  51. Rivlin, R.S., Ericksen, J.L.: Stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 323–425 (1955)

    MathSciNet  MATH  Google Scholar 

  52. Rivlin, R.S.: Further remarks on the stress-deformation relations for isotropic materials. J. Ration. Mech. Anal. 4, 681–702 (1955)

    MathSciNet  MATH  Google Scholar 

  53. Wang, C.C.: On representations for isotropic functions, Part I. Arch. Ration. Mech. Anal. 33, 249 (1969)

    Article  Google Scholar 

  54. Wang, C.C.: On representations for isotropic functions, Part II. Arch. Ration. Mech. Anal. 33, 268 (1969)

    Article  Google Scholar 

  55. Wang, C.C.: A new representation theorem for isotropic functions, Part I and Part II. Arch. Ration. Mech. Anal. 36, 166–223 (1970)

    Article  Google Scholar 

  56. Wang, C.C.: Corrigendum to ‘Representations for isotropic functions’. Arch. Ration. Mech. Anal. 43, 392–395 (1971)

    Article  Google Scholar 

  57. Smith, G.F.: On a fundamental error in two papers of C.-C. Wang, ‘On representations for isotropic functions, Parts I and II’. Arch. Ration. Mech. Anal. 36, 161–165 (1970)

    Article  MATH  Google Scholar 

  58. Smith, G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci. 9, 899–916 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  59. Spencer, A.J.M., Rivlin, R.S.: The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Ration. Mech. Anal. 2, 309–336 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  60. Spencer, A.J.M., Rivlin, R.S.: Further results in the theory of matrix polynomials. Arch. Ration. Mech. Anal. 4, 214–230 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  61. Spencer, A.J.M.: Theory of invariants. In: Eringen, A.C. (ed.) Chapter 3 ‘Treatise on Continuum Physics I’. Academic Press, Cambridge (1971)

    Google Scholar 

  62. Boehler, J.P.: On irreducible representations for isotropic scalar functions. J. Appl. Math. Mech./Z. Angew. Math. Mech. 57, 323–327 (1977)

    MathSciNet  MATH  Google Scholar 

  63. Zheng, Q.S.: On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. Int. J. Eng. Sci. 31, 1013–1024 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zheng, Q.S.: On transversely isotropic, orthotropic and relatively isotropic functions of symmetric tensors, skew-symmetric tensors, and vectors. Int. J. Eng. Sci. 31, 1399–1453 (1993)

    Article  MATH  Google Scholar 

  65. Hill, R.: On constitutive inequalities for simple materials–I. J. Mech. Phys. Solids 16, 229–242 (1968)

    Article  MATH  Google Scholar 

  66. Hill, R.: On constitutive inequalities for simple materials–II. J. Mech. Phys. Solids 16, 315–322 (1968)

    Article  MATH  Google Scholar 

  67. Hill, R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. Lond. Ser. A 314, 457–472 (1970)

    Article  MATH  Google Scholar 

  68. Hill, R.: Aspects of invariance in solid mechanics. Adv. Appl. Mech. 18, 1–72 (1978)

    MathSciNet  MATH  Google Scholar 

  69. Surana, K.S.: Advanced Mechanics of Continua. CRC/Taylor and Francis, Boca Raton (2015)

    MATH  Google Scholar 

  70. Surana, K.S., Shanbhag, R.S., Reddy, J.N.: Necessity of balance of moments of moments balance law in non-classical continuum theories for solid continua. Meccanica (2018). https://doi.org/10.1007/s11012-018-0851-1

  71. Surana, K.S., Long, S.W., Reddy, J.N.: Necessity of balance of moments of moments balance law in non-classical continuum theories for fluent continua. Acta Mech. (2018). https://doi.org/10.1007/s00707-018-2143-1

  72. Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31(8), 1063–1084 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  73. Srinivasa, A.R., Reddy, J.N.: A model for a constrained, finitely deforming, elastic solid with rotation gradient dependent strain energy, and its specialization to von Kármán plates and beams. J. Mech. Phys. Solids 61(3), 873–885 (2013)

    Article  MathSciNet  Google Scholar 

  74. Segerstad, P.H., Toll, S., Larsson, R.: A micropolar theory for the finite elasticity of open-cell cellular solids. Proc. R. Soc. A 465, 843–865 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  75. Eringen, A.C.: Mechanics of Continua. Wiley, Hoboken (1967)

    MATH  Google Scholar 

  76. Eringen, A.C.: Mechanics of micromorphic continua. In: Kröner, E. (eds) Mechanics of Generalized Continua, pp. 18–35 (1968)

  77. Eringen, A.C.: A unified theory of thermomechanical materials. Int. J. Eng. Sci. 4, 179–202 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  78. Eringen, A.C.: Linear theory of micropolar viscoelasticity. Int. J. Eng. Sci. 5, 191–204 (1967)

    Article  MATH  Google Scholar 

  79. Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (eds) Fracture, pp. 621–729 (1968)

  80. Eringen, A.C.: Balance laws of micromorphic mechanics. Int. J. Eng. Sci. 8(10), 819–828 (1970)

    Article  MATH  Google Scholar 

  81. Eringen, A.C.: Theory of micromorphic materials with memory. Int. J. Eng. Sci. 10(7), 623–641 (1972)

    Article  MATH  Google Scholar 

  82. Eringen, A.C.: Theory of thermo-microstretch fluids and bubbly liquids. Int. J. Eng. Sci. 28(2), 133–143 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  83. Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)

    Book  MATH  Google Scholar 

  84. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Surana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surana, K.S., Joy, A.D. & Reddy, J.N. Ordered rate constitutive theories for thermoviscoelastic solids without memory incorporating internal and Cosserat rotations. Acta Mech 229, 3189–3213 (2018). https://doi.org/10.1007/s00707-018-2163-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2163-x

Navigation