Skip to main content
Log in

Chemo-mechanical coupling in curing and material-interphase evolution in multi-constituent materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Chemical reactions at bimaterial interfaces during manufacturing of fiber–matrix systems result in an interphase that plays a dominant role in the response of the composite when subjected to mechanical loads. An accurate modeling of the degree of cure in the interfacial region, because of its effect on the evolving properties of the interphase material, is critical to determining the coupled chemo-mechanical interphase stresses that influence the structural integrity of the composite and its fatigue life. A mixture model for curing and interphase evolution is presented that is based on a consistent thermodynamic theory for multi-constituent materials. The mixture model is cast in a stabilized finite element method that is developed employing variational multi-scale ideas for edge-based stabilization and consistent tying of the constituents at the domain boundaries. The ensuing computational method accounts for curing and interphase chemical reactions for the evolution of the density and material modulus of the constituents that have a direct effect on the interfacial stiffness and strength. Several test cases are presented to show the range of applicability of the model and the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowen, R.M., Wiese, J.C.: Diffusion in mixtures of elastic materials. Int. J. Eng. Sci. 7(7), 689–722 (1969)

    Article  MATH  Google Scholar 

  2. Bedford, A., Stern, M.: Toward a diffusing continuum theory of composite materials. J. Appl. Mech. 38(1), 8–14 (1971)

    Article  Google Scholar 

  3. D’Mello, R.J., Maiarù, M., Waas, A.M.: Effect of the curing process on the transverse tensile strength of fiber-reinforced polymer matrix lamina using micromechanics computations. Integr. Mater. Manuf. Innov. 4(1), 7 (2015)

    Article  Google Scholar 

  4. Gajendran, H., Hall, R.B., Masud, A.: Edge stabilization and consistent tying of constituents at Neumann boundaries in multi-constituent mixture models. Int. J. Numer. Methods Eng. 110(12), 1142–1172 (2017)

    Article  MathSciNet  Google Scholar 

  5. Hall, R.B.: A theory of coupled anisothermal chemomechanical degradation for finitely-deforming composite materials with higher-gradient interactive forces. In: Proceedings of the XIII SEM International Congress and Exposition on Experimental & Applied Mechanics, Jun 6-9, 2016, Orlando, FL, Springer (2016)

  6. Hall, R.B., Rajagopal, K.R.: Diffusion of a fluid through an anisotropically chemically reacting thermoelastic body within the context of mixture theory. Math. Mech. Solids 17(2), 131–164 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hall, R.B., Gajendran, H., Masud, A.: Diffusion of chemically reacting fluids through nonlinear elastic solids: mixture model and stabilized methods. Math Mech Solids 1, 24 (2014)

    Google Scholar 

  8. Heinrich, C., Aldridge, M., Wineman, A.S., Kieffer, J., Waas, A.M., Shahwan, K.: Generation of heat and stress during the cure of composites. Int. J. Eng. Sci. 53, 85–111 (2012)

    Article  Google Scholar 

  9. Heinrich, C., Aldridge, M., Wineman, A.S., Kieffer, J., Waas, A.M., Shahwan, K.: The role of curing stresses in subsequent response, damage and failure of textile polymer composites. J. Mech. Phys. Solids 61(5), 1241–1264 (2013)

    Article  MathSciNet  Google Scholar 

  10. Hughes, T.J., Feijóo, G.R., Mazzei, L., Quincy, J.B.: The variational multiscale method: a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1), 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Humphrey, J., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl. Sci. 12(03), 407–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kannan, K., Rajagopal, K.R.: A thermodynamical framework for chemically reacting systems. Z. Angew. Math. Phys. ZAMP 62, 331–363 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karra, S.: Diffusion of a fluid through a viscoelastic solid. arXiv preprint arXiv:1010.3488 (2010)

  14. Karra, S., Rajagopal, K.R.: A model for the thermo-oxidative degradation of polyimides. Mech. Time-Depend. Mater. 16(3), 329–342 (2012)

    Article  Google Scholar 

  15. Kwack, J., Masud, A., Rajagopal, K.R.: Stabilized mixed three-field formulation for a generalized incompressible Oldroyd-B model. Int. J. Numer. Methods Fluids 83, 704–734 (2017)

    Article  Google Scholar 

  16. Leknitskii, S.G.: Theory of elasticity of an anisotropic elastic body. Holden-Day, San Francisco (1963)

    Google Scholar 

  17. Masud, A.: A 3-D model of cold drawing in engineering thermoplastics. Mech. Adv. Mater. Struct. 12(6), 457–469 (2005)

    Article  Google Scholar 

  18. Masud, A.: A multiplicative finite strain finite element framework for the modelling of semicrystalline polymers and polycarbonates. Int. J. Numer. Methods Eng. 47(11), 1887–1908 (2000)

    Article  MATH  Google Scholar 

  19. Masud, A., Bergman, L.A.: Solution of the four dimensional Fokker–Planck equation: still a challenge, ICOSSAR 2005, 1911-16 (2005)

  20. Masud, A., Calderer, R.: A variational multiscale method for incompressible turbulent flows: Bubble functions and fine scale fields. Comput. Methods Appl. Mech. Eng. 200(33–36), 2577–2593 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Masud, A., Truster, T.J., Bergman, L.A.: A variational multiscale a posteriori error estimation method for mixed form of nearly incompressible elasticity. Comput. Methods Appl. Mech. Eng. 200(47–48), 3453–3481 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Masud, A., Truster, T.J.: A framework for residual-based stabilization of incompressible finite elasticity: stabilized formulations and F-bar methods for linear triangles and tetrahedra. Comput. Methods Appl. Mech. Eng. 267, 359–399 (2013)

    Article  MATH  Google Scholar 

  23. Masud, A., Xia, K.: A stabilized mixed finite element method for nearly incompressible elasticity. J. Appl. Mech. 72, 711–720 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Masud, A., Zhang, A., Botsis, J.: Strength of composites with long-aligned fibers: fiber-fiber and fiber-crack interaction. Compos. B Eng. 29(5), 577–588 (1998)

    Article  Google Scholar 

  25. Palmese, G.R., McCullough, R.L.: Effect of epoxy-amine stoichiometry on cured resin material properties. J. Appl. Polym. Sci. 46(10), 1863–1873 (2003)

    Article  Google Scholar 

  26. Rajagopal, K.R., Srinivasa, A.: On the thermomechanics of materials that have multiple natural configurations Part I: viscoelasticity and classical plasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP 55(5), 861–893 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rajagopal, K.R.: Diffusion through polymeric solids undergoing large deformations. Mater. Sci. Technol. 19(9), 1175–1180 (2003)

    Article  Google Scholar 

  28. Rao, I., Rajagopal, K.R.: A thermodynamic framework for the study of crystallization in polymers. Zeitschrift für Angewandte Mathematik und Physik ZAMP 53(3), 365–406 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reddy, J.N.: Mechanics of laminated composite plates and shells: theory and analysis. CRC press, Boca Raton (2004)

    MATH  Google Scholar 

  30. Ruiz, E., Trochu, F.: Thermomechanical properties during cure of glass-polyester RTM composites: elastic and viscoelastic modeling. J. Compos. Mater. 39(10), 881–916 (2005)

    Article  Google Scholar 

  31. Ruiz, E., Trochu, F.: Numerical analysis of cure temperature and internal stresses in thin and thick RTM parts. Compos. Part A Appl. Sci. Manuf. 36(6), 806–26 (2005)

    Article  Google Scholar 

  32. Truster, T.J., Chen, P., Masud, A.: Finite strain primal interface formulation with consistently evolving stabilization. Int. J. Numer. Methods Eng. 102, 278–315 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vanlandingham, M.R., Eduljee, R.F., Gillespie Jr., J.W.: Relationships between stoichiometry, microstructure, and properties for amine-cured epoxies. J. Appl. Polym. Sci. 71(5), 699–712 (1999)

    Article  Google Scholar 

  34. Xia, K., Masud, A.: A stabilized finite element formulation for finite deformation elastoplasticity in geomechanics. Comput. Geotech. 36, 396–405 (2009)

    Article  Google Scholar 

  35. Yang, F., Pitchumani, R.: Effects of interphase formation on the modulus and stress concentration factor of fiber-reinforced thermosetting-matrix composites. Compos. Sci. Technol. 64(10), 1437–52 (2004)

    Article  Google Scholar 

  36. Yang, F., Pitchumani, R.: A kinetics model for interphase formation in thermosetting matrix composites. J. Appl. Polym. Sci. 89(12), 3220–36 (2003)

    Article  Google Scholar 

  37. Yang, F., Pitchumani, R.: Modeling of interphase formation on unsized fibers in thermosetting composites, pp. 329–38. ASME-Publications-ltd, New York (2000)

    Google Scholar 

Download references

Acknowledgements

Partial support for this work was provided by AFRL under Contract No. FA8650-13-C-5214 and FA8650-16-M-5047. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Masud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Arif Masud: From the thermodynamics perspective “interphase” is classified as the state when material transitions from one stable thermodynamic phase to another between its gaseous, liquid and solid states. However, in this paper we use the term “interphase material” for the material across the bimaterial interface that evolves due to chemical reactions into a state with properties that asymptote to those of the two-constituent materials normal to the interface.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajendran, H., Hall, R.B., Masud, A. et al. Chemo-mechanical coupling in curing and material-interphase evolution in multi-constituent materials. Acta Mech 229, 3393–3414 (2018). https://doi.org/10.1007/s00707-018-2170-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2170-y

Navigation