Skip to main content
Log in

Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Thermoelastic damping (TED) is one of the main energy dissipation mechanisms in structures with small scales. On the other hand, the classical continuum theory is not capable of describing the mechanical behavior of small-scale structures. In this paper, small-scale effects on the thermoelastic damping in microplates are studied. To this end, the coupled governing equations of motion and heat conduction are obtained based on the non-classical continuum theory of the modified couple stress and the dual-phase-lag heat conduction model. By solving these coupled equations, an explicit expression including small-scale effects for calculating TED in microplates is derived. The results are compared with those given by the classical continuum and heat transfer theories. In addition, numerical results are presented to investigate the influences of some parameters on TED and critical thickness, such as microplate thickness, aspect ratio, boundary conditions, and the type of material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koh, K.H., Lee, C., Kobayashi, T.: A piezoelectric-driven three-dimensional MEMS VOA using attenuation mechanism with combination of rotational and translational effects. J. Microelectromech. Syst. 19(6), 1370–1379 (2010)

    Article  Google Scholar 

  2. Li, X., Bhushan, B., Takashima, K., Baek, C.-W., Kim, Y.-K.: Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97(1), 481–494 (2003)

    Article  Google Scholar 

  3. Eom, K., Kwon, T.Y., Yoon, D.S., Lee, H.L., Kim, T.S.: Dynamical response of nanomechanical resonators to biomolecular interactions. Phys. Rev. B 76(11), 113408 (2007)

    Article  Google Scholar 

  4. Lee, I., Lee, J.: Measurement uncertainties in resonant characteristics of MEMS resonators. J. Mech. Sci. Technol. 27(2), 491 (2013)

    Article  Google Scholar 

  5. Zhang, Y.H., Ding, G., Shun, X., Gu, D., Cai, B., Lai, Z.: Preparing of a high speed bistable electromagnetic RF MEMS switch. Sens. Actuat. A 134(2), 532–537 (2007)

    Article  Google Scholar 

  6. Pelesko, J.A., Bernstein, D.H.: Modeling Mems and Nems. CRC Press, Boca Raton (2002)

    Book  MATH  Google Scholar 

  7. Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  8. Chong, A.C., Lam, D.C.: Strain gradient plasticity effect in indentation hardness of polymers. J. Mater. Res. 14(10), 4103–4110 (1999)

    Article  Google Scholar 

  9. Stölken, J., Evans, A.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46(14), 5109–5115 (1998)

    Article  Google Scholar 

  10. Nix, W.D.: Mechanical properties of thin films. Metall. Mater. Trans. A 20(11), 2217–2245 (1989)

    Article  Google Scholar 

  11. Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10(4), 853–863 (1995)

    Article  Google Scholar 

  12. Mindlin, R., Tiersten, H.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  14. Yang, F., Chong, A., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  15. Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  16. Rahaeifard, M., Kahrobaiyan, M., Asghari, M., Ahmadian, M.: Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sens. Actuat. A 171(2), 370–374 (2011)

    Article  MATH  Google Scholar 

  17. Kim, J., Reddy, J.: A general third-order theory of functionally graded plates with modified couple stress effect and the von Kármán nonlinearity: theory and finite element analysis. Acta Mech. 226(9), 2973 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Asghari, M.: Geometrically nonlinear micro-plate formulation based on the modified couple stress theory. Int. J. Eng. Sci. 51, 292–309 (2012)

    Article  MathSciNet  Google Scholar 

  19. Hosseini-Hashemi, S., Sharifpour, F., Ilkhani, M.R.: On the free vibrations of size-dependent closed micro/nano-spherical shell based on the modified couple stress theory. Int. J. Mech. Sci. 115, 501–515 (2016)

    Article  Google Scholar 

  20. Ding, N., Xu, X., Zheng, Z., Li, E.: Size-dependent nonlinear dynamics of a microbeam based on the modified couple stress theory. Acta Mech. 228(10), 3561–3579 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Reddy, J.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(11), 2382–2399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Simsek, M., Aydin, M., Yurtcu, H., Reddy, J.: Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory. Acta Mech. 226(11), 3807 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghayesh, M.H., Farokhi, H.: Coupled size-dependent behavior of shear deformable microplates. Acta Mech. 227(3), 757 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Asghari, M., Taati, E.: A size-dependent model for functionally graded micro-plates for mechanical analyses. J. Vib. Control 19(11), 1614–1632 (2013)

    Article  MathSciNet  Google Scholar 

  25. Tsiatas, G.C., Yiotis, A.J.: Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory. Acta Mech. 226(4), 1267–1281 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Asghari, M., Ahmadian, M., Kahrobaiyan, M., Rahaeifard, M.: On the size-dependent behavior of functionally graded micro-beams. Mater. Des. (1980–2015) 31(5), 2324–2329 (2010)

    Article  Google Scholar 

  27. Tahani, M., Askari, A.R., Mohandes, Y., Hassani, B.: Size-dependent free vibration analysis of electrostatically pre-deformed rectangular micro-plates based on the modified couple stress theory. Int. J. Mech. Sci. 94, 185–198 (2015)

    Article  Google Scholar 

  28. Boley, B.A., Weiner, J.H.: Theory of Thermal Stresses. Courier Corporation, New York (2012)

    MATH  Google Scholar 

  29. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  30. Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38(17), 3231–3240 (1995)

    Article  Google Scholar 

  31. Tzou, D.Y.: Macro-to Microscale Heat Transfer: The Lagging Behavior. Wiley, New York (2014)

    Book  Google Scholar 

  32. Zener, C.: Internal friction in solids I. Theory of internal friction in reeds. Phys. Rev. 52(3), 230 (1937)

    Article  MATH  Google Scholar 

  33. Zener, C.: Internal friction in solids II. General theory of thermoelastic internal friction. Phys. Rev. 53(1), 90 (1938)

    Article  MATH  Google Scholar 

  34. Roszhart, T.V.: The effect of thermoelastic internal friction on the \(Q\) of micromachined silicon resonators. In: Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest, IEEE, pp. 13–16. IEEE (1990)

  35. Yang, J., Ono, T., Esashi, M.: Energy dissipation in submicrometer thick single-crystal silicon cantilevers. J. Microelectromech. Syst. 11(6), 775–783 (2002)

    Article  Google Scholar 

  36. Sepulveda, N., Aslam, D., Sullivan, J.P.: Polycrystalline diamond MEMS resonator technology for sensor applications. Diam. Relat. Mater. 15(2), 398–403 (2006)

    Article  Google Scholar 

  37. Duwel, A., Candler, R.N., Kenny, T.W., Varghese, M.: Engineering MEMS resonators with low thermoelastic damping. J. Microelectromech. Syst. 15(6), 1437–1445 (2006)

    Article  Google Scholar 

  38. Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 61(8), 5600 (2000)

    Article  Google Scholar 

  39. Prabhakar, S., Vengallatore, S.: Theory of thermoelastic damping in micromechanical resonators with two-dimensional heat conduction. J. Microelectromech. Syst. 17(2), 494–502 (2008)

    Article  Google Scholar 

  40. Pei, Y.C.: Thermoelastic damping in rotating flexible micro-disk. Int. J. Mech. Sci. 61(1), 52–64 (2012)

    Article  Google Scholar 

  41. Parayil, D.V., Kulkarni, S.S., Pawaskar, D.N.: Analytical and numerical solutions for thick beams with thermoelastic damping. Int. J. Mech. Sci. 94, 10–19 (2015)

    Article  Google Scholar 

  42. Li, P., Fang, Y., Hu, R.: Thermoelastic damping in rectangular and circular microplate resonators. J. Sound Vib. 331(3), 721–733 (2012)

    Article  Google Scholar 

  43. Fang, Y., Li, P., Zhou, H., Zuo, W.: Thermoelastic damping in rectangular microplate resonators with three-dimensional heat conduction. Int. J. Mech. Sci. 133, 578–589 (2017)

    Article  Google Scholar 

  44. Zuo, W., Li, P., Zhang, J., Fang, Y.: Analytical modeling of thermoelastic damping in bilayered microplate resonators. Int. J. Mech. Sci. 106, 128–137 (2016)

    Article  Google Scholar 

  45. Nourmohammadi, Z., Joshi, S., Vengallatore, S.: Analysis of nonlinear thermoelastic dissipation in Euler–Bernoulli beam resonators. PLoS ONE 11(10), e0164669 (2016)

    Article  Google Scholar 

  46. Tunvir, K., Ru, C., Mioduchowski, A.: Large-deflection effect on thermoelastic dissipation of microbeam resonators. J. Therm. Stresses 35(12), 1076–1094 (2012)

    Article  Google Scholar 

  47. Zhong, Z.Y., Zhou, J.P., Zhang, H.L.: Thermoelastic damping in functionally graded microbeam resonators. IEEE Sens. J. 17(11), 3381–3390 (2017)

    Article  Google Scholar 

  48. Hossain, S.T., McWilliam, S., Popov, A.A.: An investigation on thermoelastic damping of high-\(Q\) ring resonators. Int. J. Mech. Sci. 106, 209–219 (2016)

    Article  Google Scholar 

  49. Liu, S., Sun, Y., Ma, J., Yang, J.: Theoretical analysis of thermoelastic damping in bilayered circular plate resonators with two-dimensional heat conduction. Int. J. Mech. Sci. 135, 114–123 (2018)

    Article  Google Scholar 

  50. Rezazadeh, G., Vahdat, A.S., Tayefeh-rezaei, S., Cetinkaya, C.: Thermoelastic damping in a micro-beam resonator using modified couple stress theory. Acta Mech. 223(6), 1137–1152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Razavilar, R., Alashti, R.A., Fathi, A.: Investigation of thermoelastic damping in rectangular microplate resonator using modified couple stress theory. Int. J. Mech. Mater. Des. 12(1), 39–51 (2016)

    Article  Google Scholar 

  52. Zhong, Z.Y., Zhang, W.M., Meng, G., Wang, M.Y.: Thermoelastic damping in the size-dependent microplate resonators based on modified couple stress theory. J. Microelectromech. Syst. 24(2), 431–445 (2015)

    Article  Google Scholar 

  53. Khisaeva, Z., Ostoja-Starzewski, M.: Thermoelastic damping in nanomechanical resonators with finite wave speeds. J. Therm. Stresses 29(3), 201–216 (2006)

    Article  Google Scholar 

  54. Guo, F.: Thermo-elastic dissipation of microbeam resonators in the framework of generalized thermo-elasticity theory. J. Therm. Stresses 36(11), 1156–1168 (2013)

    Article  Google Scholar 

  55. Guo, F., Song, J., Wang, G., Zhou, Y.: Analysis of thermoelastic dissipation in circular micro-plate resonators using the generalized thermoelasticity theory of dual-phase-lagging model. J. Sound Vib. 333(11), 2465–2474 (2014)

    Article  Google Scholar 

  56. Zhou, H., Li, P.: Thermoelastic damping in micro-and nanobeam resonators with non-Fourier heat conduction. IEEE Sens. J. 17(21), 6966–6977 (2017)

    Article  Google Scholar 

  57. Taati, E., Najafabadi, M.M., Tabrizi, H.B.: Size-dependent generalized thermoelasticity model for Timoshenko microbeams. Acta Mech. 225(7), 1823–1842 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kakhki, E.K., Hosseini, S.M., Tahani, M.: An analytical solution for thermoelastic damping in a micro-beam based on generalized theory of thermoelasticity and modified couple stress theory. Appl. Math. Model. 40(4), 3164–3174 (2016)

    Article  MathSciNet  Google Scholar 

  59. Zhang, H., Kim, T., Choi, G., Cho, H.H.: Thermoelastic damping in micro-and nanomechanical beam resonators considering size effects. Int. J. Heat Mass Transf. 103, 783–790 (2016)

    Article  Google Scholar 

  60. Hetnarski, R.B., Eslami, M.R., Gladwell, G.: Thermal Stresses: Advanced Theory and Applications. Springer, New York (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Asghari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borjalilou, V., Asghari, M. Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model. Acta Mech 229, 3869–3884 (2018). https://doi.org/10.1007/s00707-018-2197-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2197-0

Navigation