Skip to main content
Log in

Nonlinear vibration of piezoelectric laminated nanobeams at higher modes based on nonlocal piezoelectric theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The presented paper investigates the nonlinear vibration of a nanobeam with a piezoelectric layer bounded to its top surface considering the nonlocal piezoelectricity theory. To do this, Hamilton’s principle is implemented to derive the governing nonlinear vibration equations of the nanobeam by assumption of nonlocal piezoelectricity and a nonlinear strain–displacement relation. Then, the Galerkin separation method is applied to transform and simplify the partial differential equation of the nonlinear oscillation to an ordinary one with quadratic and cubic nonlinearities in the time domain. By implementing the multiple-scale perturbation method, an analytical relation for the nonlinear natural frequencies is obtained as a function of the oscillation amplitude and the nonlocal size scale parameter. Then, the nonlinear vibration characteristics of the nanobeam are investigated at higher modes of vibration and the size scale effects are reviewed comprehensively. It is observed that the nonlocal parameter decreases the nonlinear natural frequencies and becomes noticeable at higher modes of vibration. Moreover, by increasing the amplitude ratio, the nonlocal effects are decreased and the nonlocal nonlinear frequency approaches the local one. Also, the amplitude ratio has increasing effects on the nonlinear frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bakhtiari-Nejad, F., Nazemizadeh, M.: Size-dependent dynamic modeling and vibration analysis of MEMS/NEMS-based nanomechanical beam based on the nonlocal elasticity theory. Acta Mech. 227(5), 1363–1379 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Giannopoulos, G.I., Georgantzinos, S.K.: Establishing detection maps for carbon nanotube mass sensors: molecular versus continuum mechanics. Acta Mech. 228(6), 2377–2390 (2017)

    Article  Google Scholar 

  3. Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Chiral elasticity of nano/microtubes from hexagonal crystals. Acta Mech. 229(5), 2189–2201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Piekarski, B., DeVoe, D., Dubey, M., Kaul, R., Conrad, J.: Surface micromachined piezoelectric resonant beam filters. Sens. Actuators, A 91(3), 313–320 (2001)

    Article  Google Scholar 

  5. Lazarus, A., Thomas, O., Deü, J.F.: Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS. Finite Elem. Anal. Des. 49(1), 35–51 (2012)

    Article  MathSciNet  Google Scholar 

  6. Piekarski, B., Dubey, M., Zakar, E., Polcawich, R., Devoe, D., Wickenden, D.: Sol-gel PZT for MEMS applications. Integr. Ferroelectr. 42(1), 25–37 (2002)

    Article  Google Scholar 

  7. Korayem, M.H., Badkoobeh, H.H., Taheri, M.: Dynamic modeling and simulation of rough cylindrical micro/nanoparticle manipulation with atomic force microscopy. Microscopy and microanalysis: the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada 1–16 (2014)

  8. Demir, Ç., Civalek, Ö., Akgöz, B.: Free vibration analysis of carbon nanotubes based on shear deformable beam theory by discrete singular convolution technique. Math. Comput. Appl. 15(1), 57–65 (2010)

    MATH  Google Scholar 

  9. Alibeigi, B., Beni, Y.T., Mehralian, F.: On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams. Eur. Phys. J. Plus 133(3), 133 (2018)

    Article  Google Scholar 

  10. Abdollahi, M., Saidi, A.R., Mohammadi, M.: Buckling analysis of thick functionally graded piezoelectric plates based on the higher-order shear and normal deformable theory. Acta Mech. 226(8), 2497–2510 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lumentut, M.F., Shu, Y.C.: A unified electromechanical finite element dynamic analysis of multiple segmented smart plate energy harvesters: circuit connection patterns. Acta Mech. 229(11), 4575–4604 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Firdaus, S.M., Azid, I.A., Sidek, O., Ibrahim, K., Hussien, M.: Enhancing the sensitivity of a mass-based piezoresistive micro-electro-mechanical systems cantilever sensor. Micro Nano Lett. IET 5(2), 85–90 (2010)

    Article  Google Scholar 

  13. Zhang, W., Meng, G., Li, H.: Adaptive vibration control of micro-cantilever beam with piezoelectric actuator in MEMS. Int. J. Adv. Manuf. Technol. 28(3), 321–327 (2006)

    Article  Google Scholar 

  14. Souayeh, S., Kacem, N., Najar, F., & Foltête, E.: Nonlinear dynamics of parametrically excited carbon nanotubes for mass sensing applications. In: ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete Island, Greece, 25–27 May (2015)

  15. SoltanRezaee, M., Bodaghi, M., Farrokhabadi, A., Hedayati, R.: Nonlinear stability analysis of piecewise actuated piezoelectric microstructures. Int. J. Mech. Sci. 160, 200–208 (2019)

    Article  Google Scholar 

  16. Zhu, H.T., Zbib, H.M., Aifantis, E.C.: Strain gradients and continuum modeling of size effect in metal matrix composites. Acta Mech. 121(1–4), 165–176 (1997)

    Article  MATH  Google Scholar 

  17. Agrawal, R., Peng, B., Gdoutos, E.E., Espinosa, H.D.: Elasticity size effects in ZnO nanowires\(-\) a combined experimental-computational approach. Nano Lett. 8(11), 3668–3674 (2008)

    Article  Google Scholar 

  18. Mohammed, Y., Hassan, M.K., El-Ainin, H.A., Hashem, A.M.: Size effect analysis of open-hole glass fiber composite laminate using two-parameter cohesive laws. Acta Mech. 226(4), 1027–1044 (2015)

    Article  Google Scholar 

  19. Giannopoulos, G.I.: Fullerenes as mass sensors: a numerical investigation. Physica E 56, 36–42 (2014)

    Article  Google Scholar 

  20. Feng, C., Jiang, L.Y.: Molecular dynamics simulation of squeeze-film damping effect on nano resonators in the free molecular regime. Physica E 43(9), 1605–1609 (2011)

    Article  MathSciNet  Google Scholar 

  21. Akgöz, B., Civalek, Ö.: Free vibration analysis of axially functionally graded tapered Bernoulli-Euler micro beams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013)

    Article  Google Scholar 

  22. Akgöz, B., Civalek, Ö.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49(11), 1268–1280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Beni, Y.T.: A nonlinear electro-mechanical analysis of nanobeams based on the size-dependent piezoelectricity theory. J. Mech. 33(3), 289–301 (2017)

    Article  Google Scholar 

  24. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41(3), 305–312 (2003)

    Article  Google Scholar 

  26. Civalek, Ö., Demir, Ç.: Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory. Appl. Math. Model. 35(5), 2053–2067 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Demir, Ç., Civalek, Ö.: Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Appl. Math. Model. 37(22), 9355–9367 (2013)

    Article  MATH  Google Scholar 

  28. Asemi, S.R., Farajpour, A., Mohammadi, M.: Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory. Compos. Struct. 116, 703–712 (2014)

    Article  Google Scholar 

  29. Nazemizadeh, M., Bakhtiari-Nejad, F.: Size-dependent free vibration of nano/microbeams with piezo-layered actuators. Micro Nano Lett. 10(2), 93–98 (2015)

    Article  Google Scholar 

  30. Nazemizadeh, M., Bakhtiari-Nejad, F.: A general formulation of quality factor for composite micro/nano beams in the air environment based on the nonlocal elasticity theory. Compos. Struct. 132(15), 772–783 (2015)

    Article  Google Scholar 

  31. Kiani, K., Pakdaman, H.: Nonlocal vibrations and potential instability of monolayers from double-walled carbon nanotubes subjected to temperature gradients. Int. J. Mech. Sci. 144, 576–599 (2018)

    Article  Google Scholar 

  32. Mercan, K., Numanoglu, H.M., Akgöz, B., Demir, C., Civalek, Ö.: Higher-order continuum theories for buckling response of silicon carbide nanowires (SiCNWs) on elastic matrix. Arch. Appl. Mech. 87(11), 1797–1814 (2017)

    Article  Google Scholar 

  33. Demir, C., Mercan, K., Numanoglu, H.M., Civalek, O.: Bending response of nanobeams resting on elastic foundation. J. Appl. Comput. Mech. 4(2), 105–114 (2018)

    Google Scholar 

  34. Zhou, Z.G., Wu, L.Z., Du, S.Y.: Non-local theory solution for a Mode I crack in piezoelectric materials. Eur. J. Mech. A/Solids 25(5), 793–807 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, H., Preidikman, S., Balachandran, B., Mote Jr., C.D.: Nonlinear free and forced oscillations of piezoelectric microresonators. J. Micromech. Microeng. 16(2), 356 (2006)

    Article  Google Scholar 

  36. Li, C., Lim, C.W., Yu, J.L.: Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load. Smart Mater. Struct. 20(1), 015023 (2011)

    Article  Google Scholar 

  37. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  38. Lestari, W., Hanagud, S.: Nonlinear vibration of buckled beams: some exact solutions. Int. J. Solids Struct. 38(26), 4741–4757 (2001)

    Article  MATH  Google Scholar 

  39. Rao, G.V., Raju, K.K., Raju, I.S.: Finite element formulation for the large amplitude free vibrations of beams and orthotropic circular plates. Comput. Struct. 6(3), 169–172 (1976)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nazemizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazemizadeh, M., Bakhtiari-Nejad, F., Assadi, A. et al. Nonlinear vibration of piezoelectric laminated nanobeams at higher modes based on nonlocal piezoelectric theory. Acta Mech 231, 4259–4274 (2020). https://doi.org/10.1007/s00707-020-02736-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02736-1

Navigation