Skip to main content
Log in

Studies on large deflection of geometrically nonlinear corrugated structures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This manuscript proposes an iterative scheme for geometrically large deflection analysis of corrugated structures using the nonlinear shooting method. The corrugated structure is modeled by discretizing it in several corrugated units. The solution of each unit is obtained assuming it to be consistering of several beam elements. Finally, the deflection of a corrugated structure is calculated assembling the deflection of each of the corrugated units. The formulation has been extended to various boundary conditions (fixed–fixed and fixed–hinged) and loading conditions (point loads and uniformly distributed load). This shows the versatility of the methods in solving various problems. Furthermore, two prototypes of the corrugated structure are fabricated using aluminum and carbon fiber reinforced polymer (CFRP) laminate, and a moment actuation test is performed. The deflections of these prototypes obtained using the proposed iterative scheme are compared with the numerical model and validated with experiments, and results are found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Dayyani, I., Shaw, A.D., Flores, E.I.S., Friswell, M.I.: The mechanics of composite corrugated structures: a review with applications in morphing aircraft. Compos. Struct. 133, 358–380 (2015)

    Article  Google Scholar 

  2. Yokozeki, T., Sugiura, A., Hirano, Y.: Development of variable camber morphing airfoil using corrugated structure. J. Aircr. 51, 1–7 (2014)

    Article  Google Scholar 

  3. Liang, C.-C., Yang, M.-F., Wu, P.-W.: Optimum design of metallic corrugated core sandwich panels subjected to blast loads. Ocean Eng. 28, 825–861 (2001)

    Article  Google Scholar 

  4. Queheillalt, D.T., Murty, Y., Wadley, H.N.G.: Mechanical properties of an extruded pyramidal lattice truss sandwich structure. Scr. Mater. 58, 76–79 (2008)

    Article  Google Scholar 

  5. Bowen, C.R., Butler, R., Jervis, R., Kim, H.A., Salo, A.I.T.: Morphing and shape control using unsymmetrical composites. J. Intell. Mater. Syst. Struct. 18, 89–98 (2007)

    Article  Google Scholar 

  6. Phani, A.S., Richard, B., Stephen, H., Bowen, C.R.: Analysis of wing morphing via frame buckling,In: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials, Schaumburg, IL (2008)

  7. Fusi, F., Congedo, P.M., Guardone, A., Quaranta, G.: Shape optimization under uncertainty of morphing airfoils. Acta Mech. 229, 1229–1250 (2018)

    Article  MathSciNet  Google Scholar 

  8. Kumar, D., Ali, S.F., Arockiarajan, A.: Structural and aerodynamics studies on various wing configurations for morphing. IFAC-PapersOnLine 51, 498–503 (2018)

    Article  Google Scholar 

  9. Mukherjee, A., Kumar, D., Ali, S.F., Arockiarajan, A.: Design and conception of a trailing edge morphing wing concept with bistable composite skin. Act. Passiv. Smart Struct. Integr. Syst. XIV, Int. Soc. Opt. Photonics 11376, 497–506 (2020)

    Google Scholar 

  10. Dhileep, K., Kumar, D., Ghosh, S., Ali, S. F., Arockiarajan, A.: Numerical Study of Camber Morphing in NACA0012 Airfoil, In: AIAA AVIATION 2020 FORUM, 2781, June 15-19, 2020, VIRTUAL EVENT (2020)

  11. Yokozeki, T., Takeda, S.-I., Ogasawara, T., Ishikawa, T.: Mechanical properties of corrugated composites for candidate materials of flexible wing structures. Comp. Part A: Appl. Sci. Manuf. 37, 1578–1586 (2006)

    Article  Google Scholar 

  12. Xia, Y., Friswell, M.I., Flores, E.I.S.: Equivalent models of corrugated panels. Int. J. Solids Struct. 49, 1453–1462 (2012)

    Article  Google Scholar 

  13. Mohammadi, H., Ziaei-Rad, S., Dayyani, I.: An equivalent model for trapezoidal corrugated cores based on homogenization method. Comp. Struct. 131, 160–170 (2015)

    Article  Google Scholar 

  14. Wang, C., Khodaparast, H.H., Friswell, M.I., Shaw, A.D.: An equivalent model of corrugated panels with axial and bending coupling. Comput. Struct. 183, 61–72 (2017)

    Article  Google Scholar 

  15. Samanta, A., Mukhopadhyay, M.: Finite element static and dynamic analyses of folded plates. Eng. Struct. 21, 277–287 (1999)

    Article  Google Scholar 

  16. Thill, C., Etches, J.A., Bond, I.P., Potter, K.D., Weaver, P.M., Wisnom, M.R.: Investigation of trapezoidal corrugated aramid/epoxy laminates under large tensile displacements transverse to the corrugation direction. Comp. Part A: Appl. Sci. Manuf. 41, 168–176 (2010)

    Article  Google Scholar 

  17. Dayyani, I., Ziaei-Rad, S., Salehi, H.: Numerical and experimental investigations on mechanical behavior of composite corrugated core. Appl. Comp. Mater. 19, 705–721 (2012)

    Article  Google Scholar 

  18. Liew, K.M., Peng, L.X., Kitipornchai, S.: Nonlinear analysis of corrugated plates using a FSDT and a meshfree method. Comput. Methods Appl. Mech. Eng. 196, 2358–2376 (2007)

    Article  Google Scholar 

  19. Talebi, H., Zakerzadeh, M.R., Salehi, H., Golestanian, H.: Nonlinear analysis of a corrugate composite panel actuated by shape memory alloy wire, In: 22nd Annual International Conference on Mechanical Engineering, ISME2014-2185, Ahvaz, Iran (2014)

  20. Wang, N., Liang, X., Zhang, X.: Pseudo-rigid-body model for corrugated cantilever beam used in compliant mechanisms. Chinese J. Mech. Eng. 27, 122–129 (2014)

    Article  Google Scholar 

  21. Zheng, Y., Qiu, Z.: Analysis of the critical buckling loads of composite corrugated plates under nonlinearly distributed compressive loads accounting for flexural-twist coupling. Acta Mech. 227, 3407–3428 (2016)

    Article  MathSciNet  Google Scholar 

  22. Thurnherr, C., Ruppen, L., Kress, G., Ermanni, P.: Non-linear stiffness response of corrugated laminates in tensile loading. Comp. Struct. 157, 244–255 (2016)

    Article  Google Scholar 

  23. Thurnherr, C., Ruppen, L., Brändli, S., Franceschi, C.M., Kress, G., Ermanni, P.: Stiffness analysis of corrugated laminates under large deformation. Comp. Struct. 160, 457–467 (2017)

    Article  Google Scholar 

  24. Karakoti, A., Kar, V.R.: Deformation characteristics of sinusoidally-corrugated laminated composite panel- A higher-order finite element approach. Comp. Struct. 216, 151–158 (2019)

    Article  Google Scholar 

  25. Tsushima, N., Yokozeki, T., Su, W., Arizono, H.: Geometrically nonlinear static aeroelastic analysis of composite morphing wing with corrugated structures. Aerosp. Sci. Technol. 88, 244–257 (2019)

    Article  Google Scholar 

  26. Kress, G.R., Filipovic, D.T.: An analytical nonlinear morphing model for corrugated laminates. Curved Layer. Struct. 6, 57–67 (2019)

    Article  Google Scholar 

  27. Filipovic, D., Kress, G.R.: Manufacturing method for high-amplitude corrugated thin-walled laminates. Comp. Struct. 222, 110925 (2019)

    Article  Google Scholar 

  28. Wang, C., Xia, Y., Friswell, M.I., Flores, E.I.S.: Predicting global strain limits for corrugated panels. Comp. Struct. 231, 111472 (2020)

    Article  Google Scholar 

  29. Howell, L.L.: Compliant Mechanisms, Composite Structures. Wiley, New York, NY (2001)

    Google Scholar 

  30. Bona, F.D., Zelenika, S.: A generalized elastica-type approach to the analysis of large displacements of spring-strips. J. Mech. Eng. Sci. 211, 509–517 (1997)

    Article  Google Scholar 

  31. Mukherjee, A., Ali, S.F., Arockiarajan, A.: Compliant structure under follower forces and any combined loading: Theoretical and experimental studies. Int. J. Mech. Sci. 153–154, 75–82 (2019)

    Article  Google Scholar 

  32. Howell, L.L., Midha, A.: Parametric deflection approximations for end-loaded, large-deflection beams in compliant mechanisms. J. Mech. Des. 117, 156–165 (1995)

    Article  Google Scholar 

  33. González, C., Llorca, J.: Stiffness of a curved beam subjected to axial load and large displacements. Int. J. Solids Struct. 42, 1537–1545 (2005)

    Article  Google Scholar 

  34. Stanoyevitch, A.: Introduction to Numerical Ordinary and Partial Differential Equations using MATLAB, vol. 72. Wiley, New Jersey (2011)

    MATH  Google Scholar 

  35. Banerjee, A., Bhattacharya, B., Mallik, A.K.: Large deflection of cantilever beams with geometric non-linearity: Analytical and numerical approaches. Int. J. Non-linear Mech. 43, 366–376 (2008)

    Article  Google Scholar 

  36. ASTM D3039 / D3039M-17: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, PA, 15.03, pp. 1-13 (2017)

  37. ASTM D3518 / D3518M-18: Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a \(\pm 45^{\circ }\) Laminate, ASTM International, PA, 15.03, pp. 1-13 (2018)

  38. Ge, R., Wang, B., Mou, C., Zhou, Y.: Deformation characteristics of corrugated composites for morphing wings. J. Mech. Des. 117, 156–165 (1995)

    Article  Google Scholar 

  39. ASTM D3171-15: Standard Test Method for Constituent Content of Composite Materials, ASTM International, PA, 15.03, 1-11 (2015)

  40. Simulia and S, Dassault: ABAQUS 6.13 Documentation, Dassault Systemes (2013)

Download references

Acknowledgements

The authors hereby acknowledge the funding obtained from DRDO (DRDO/DFTM/04/3304/PC/02/776/D (R&D)) through CoPT and ARDB (ARDB/01/1051810/M/I) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Arockiarajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Ali, S.F. & Arockiarajan, A. Studies on large deflection of geometrically nonlinear corrugated structures. Acta Mech 232, 461–482 (2021). https://doi.org/10.1007/s00707-020-02861-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02861-x

Navigation