Skip to main content
Log in

Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Using particle bombardment transformation, we introduced maize pepc cDNA encoding phosphoenolpyruvate carboxylase (PEPC) and ppdk cDNA encoding pyruvate orthophosphate dikinase (PPDK) into the C3 crop wheat to generate transgenic wheat lines carrying cDNA of pepc (PC lines), ppdk (PK lines) or both (PKC lines). The integration, transcription, and expression of the foreign genes were confirmed by Southern blot, Real-time quantitative reverse transcription PCR (Q-RT–PCR), and Western blot analysis. Q-RT-PCR results indicated that the average relative expression levels of pepc and ppdk in the PKC lines reached 10 and 4.6, respectively, compared to their expressions in untransformed plants (set to 1). The enzyme activities of PEPC and PPDK in the PKC lines were 4.3- and 2.1-fold higher, respectively, than in the untransformed control. The maximum daily net photosynthetic rates of the PKC, PC, and PK lines were enhanced by 26.4, 13.3, and 4.5 %, respectively, whereas the diurnal accumulations of photosynthesis were 21.3, 13.9, and 6.9 %, respectively, higher than in the control. The Fv/Fm of the transgenic plants decreased less than in the control under high temperature and high light conditions (2 weeks after anthesis), suggesting that the transgenic wheat transports more absorbed light energy into a photochemical reaction. The exogenous maize C4-specific pepc gene was more effective than ppdk at improving the photosynthetic performance and yield characteristics of transgenic wheat, while the two genes showed a synergistic effect when they were transformed into the same genetic background, because the PKC lines exhibited improved photosynthetic and physiological traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alla MMN, Hassan NM (2012) A possible role for C4 photosynthetic enzymes in tolerance of Zea mays to NaCl. Protoplasma 249:1109–1117

    Article  PubMed  Google Scholar 

  • Aoyagi K, Bassham JA (1986) Variation in amounts of pyruvate, orthophosphate dikinase, and some other enzymes of the C4 pathway in some wheat species. Plant Physiol 82:96–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen XQ, Zhang XD, Liang QR, Zhang LQ, Yang FP, Cao QM (2004) Molecular cloning of maize C4 pepc and GM research in wheat. Chin Sci Bull 49:1976–1982 (in Chinese)

    Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demmig B, Winter K, Krüger A, Czygan F (1987) Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84:218–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding ZS, Zhao M, Jing YX, Li LB, Kuang TY (2007) Effect of overexpression of maize ppc gene on photosynthesis in transgenic rice plants. Acta Agron Sin 33:717–722 (in Chinese)

    CAS  Google Scholar 

  • Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196

    Article  CAS  PubMed  Google Scholar 

  • Fischer RA, Rees D, Sayre KD, Lu Z, Condon AG, Saavedra AL (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38:1467–1475

    Article  Google Scholar 

  • Fukayama H, Tsuchida H, Agarie S, Nomura M, Onodera H, Ono K, Lee B, Hirose S, Toki S, Ku MS (2001) Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant Physiol 127:1136–1146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gehlen J, Panstruga R, Smets H, Merkelbach S, Kleines M, Porsch P, Fladung M, Becker I, Rademacher T, Hausler RE (1996) Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum. Plant Mol Biol 32:831–848

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais J, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta Gen Subj 990:87–92

    Article  CAS  Google Scholar 

  • González M, Sanchez R, Cejudo FJ (2003) Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta 216:985–992

    PubMed  Google Scholar 

  • Han LL, Xu WG, Hu L, Li Y, Qi XL, Zhang JH, Zhang HF, Wang YX (2013) Preliminary study on the physiological characteristics of transgenic wheat with maize C4-pepc gene in field conditions. Cereal Res Commun 1–11

  • Hatch MD (1987) C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 895:81–106

    Article  CAS  Google Scholar 

  • Häusler RE, Rademacher T, Li J, Lipka V, Fischer KL, Schubert S, Kreuzaler F, Hirsch HJ (2001) Single and double overexpression of C4 cycle genes had differential effects on the pattern of endogenous enzymes, attenuation of photorespiration and on contents of UV protectants in transgenic potato and tobacco plants. J Exp Bot 52(362):1785–1803.

    Google Scholar 

  • Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice—rationale and feasibility. Curr Opin Plant Biol 11:228–231

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Li Y, Xu WG, Zhang QC, Zhang L, Qi XL, Dong HB (2012) Improvement of the photosynthetic characteristics of transgenic wheat plants by transformation with the maize C4 phosphoenolpyruvate carboxylase gene. Plant Breed 131:385–391

    Article  CAS  Google Scholar 

  • Hudspeth RL, Grula JW, Dai Z, Edwards GE, Ku MS (1992) Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco effects on biochemistry and physiology. Plant Physiol 98:458–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishimaru K, Ichikawa H, Matsuoka M, Ohsugi R (1997) Analysis of a C4 maize pyruvate, orthophosphate dikinase expressed in C3 transgenic Arabidopsis plants. Plant Sci 129:57–64

    Article  CAS  Google Scholar 

  • Jiao D, Huang X, Li X, Chi W, Kuang T, Zhang Q, Ku MS, Cho D (2002) Photosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes. Photosynth Res 72:85–93

    Article  CAS  PubMed  Google Scholar 

  • Kogami H, Shono M, Koike T, Yanagisawa S, Izui K, Sentoku N, Tanifuji S, Uchimiya H, Toki S (1994) Molecular and physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. Transgenic Res 3:287–296

    Article  CAS  Google Scholar 

  • Kropff MJ, Cassman KG, Peng S, Matthews RB, Setter TL (1994) Quantitative understanding of yield potential. In: Breaking the yield barrier. Proceedings of a workshop on rice yield potential in favorable environments. Manila (Philippines): International Rice Research Institute. pp: 21–38

  • Ku MS, Kano-Murakami Y, Matsuoka M (1996) Evolution and expression of C4 photosynthesis genes. Plant Physiol 111:949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ku MS, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999) High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17:76–80

    Article  CAS  PubMed  Google Scholar 

  • Ku MS, Cho D, Ranade U, Hsu TP, Li X, Jiao DM, Ehleringer J, Miyao M, Matsuoka M (2000) Photosynthetic performance of transgenic rice plants overexpressing maize C4 photosynthesis enzymes. Stud Plant Sci 7:193–204

    Article  CAS  Google Scholar 

  • Ku MS, Cho D, Li X, Jiao D, Pinto M, Miyao M, Matsuoka M (2001) Introduction of genes encoding C4 photosynthesis enzymes into rice plants: physiological consequences Novartis Foundation Symposium 236-Rice Biotechnology: Improving Yield, Stress Tolerance and Grain Quality, pp. 100–116. Wiley Online Library

  • Lara MV, Chuong SD, Akhani H, Andreo CS, Edwards GE (2006) Species having C4 single-cell-type photosynthesis in the Chenopodiaceae family evolved a photosynthetic phosphoenolpyruvate carboxylase like that of Kranz-type C4 species. Plant Physiol 142:673–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Xu WG, Hu L, Zhang L, Qi XL, Zhang QC, Wang GS (2009) Construction of a high-efficient expression vector for maize Phosphoenolpyruvate Carboxylase gene and its transformation in wheat. J Triticeae Crop 29:741–746 (in Chinese)

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Magnin NC, Cooley BA, Reiskind JB, Bowes G (1997) Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiol 115:1681–1689

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuoka M, Fukayama H, Tsuchida H, Nomura M, Agarie S, Ku M, Miyao M (2000) How to express some C4 photosynthesis genes at high levels in rice. Stud Plant Sci 7:167–175

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Murata Y (1981) Dependence of potential productivity and efficiency for solar energy utilization on leaf photosynthetic capacity in crop species. Japanese Journal of Crop Science 50:

  • Murchie EH, Pinto M, Horton P (2009) Agriculture and the new challenges for photosynthesis research. New Phytol 181:532–552

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O'Leary MH (1982) Phosphoenolpyruvate carboxylase: an enzymologist's view. Annu Rev Plant Physiol 33:297–315

    Article  Google Scholar 

  • Streatfield SJ, Weber A, Kinsman EA, Hausler RE, Li J, Post-Beittenmiller D, Kaiser WM, Pyke KA, Flugge U, Chory J (1999) The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression. Plant Cell Online 11:1609–1621

    Article  CAS  Google Scholar 

  • Surridge C (2002) Agricultural biotech: the rice squad. Nature 416:576–578

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi Y, Ohkawa H, Masumoto C, Fukuda T, Tamai T, Lee K, Sudoh S, Tsuchida H, Sasaki H, Fukayama H (2008) Overproduction of C4 photosynthetic enzymes in transgenic rice plants: an approach to introduce the C4-like photosynthetic pathway into rice. J Exp Bot 59:1799–1809

    Article  CAS  PubMed  Google Scholar 

  • Tolley BJ, Sage TL, Langdale JA, Hibberd JM (2012) Individual maize chromosomes in the C3 plant oat can increase bundle sheath cell size and vein density. Plant Physiol 159:1418–1427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science 336:1671–1672

    Article  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414:543–546

    Article  CAS  PubMed  Google Scholar 

  • Wang YM, Xu WG, Hu L, Zhang L, Li Y, Du XH (2012) Expression of maize gene encoding C4-Pyruvate Orthophosphate Dikinase (PPDK) and C4-Phosphoenolpyruvate Carboxylase (PEPC) in transgenic Arabidopsis. Plant Mol Biol Rep 30:1367–1374

    Article  CAS  Google Scholar 

  • Wu Q, Xu WG, Li Y, Qi XL, Hu L, Zhang L, Han LL (2011) Physiological characteristics of photosynthesis in transgenic wheat with maize C4-PEPC gene under field conditions. Acta Agron Sin 37:2046–2052

    Article  CAS  Google Scholar 

  • Xu XL, ZHANG YH, WANG ZM (2003) Effect of heat stress during grain filling on phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase/oxygenase activities of various green organs in winter wheat. Photosynthetica 42(2):317–320

    Article  Google Scholar 

  • Yan JY, Liu XZ (1995) Estimation of photosynthetic accumulation amount and analysis of its rules in wheat. Agric Meteorol 1:5–9 (in Chinese)

    Google Scholar 

  • Zhang BJ, LING LL, Chen QZ, Hua C, Jiao DM (2009) A key limited factor ATP of constructing C4-like rice. Acta Agric Boreali Sin 24:17–22 (in Chinese)

    Google Scholar 

  • Zhang JH, Xu WG, Wang HW, Li Y, Hu L, Han LL, Zhang HF (2012) Molecular characteristics and photosynthetic property of the transgenic wheat expressing a maize C4-type pepc gene. J Triticeae Crop 32:1043–1048 (in Chinese)

    CAS  Google Scholar 

  • Zheng TC, Zhang XK, Yin GH, Wang LN, Han YL, Chen L, Huang F, Tang JW, Xia XC, He ZH (2011) Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Field Crop Res 122:225–233

    Article  Google Scholar 

  • Zhu X, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The China Agriculture Research System (no. CARS-3-1-9), Genetically Modified Organisms Breeding Major Projects of China (no. 2011ZX08002-003), National Natural Science Foundation of China (no. 31371707), and National Key Technology R & D Program (nos. 2011BAD07B00 and 2011BAD35B03) supported this work.

Conflict of interest

We declare that the submitted manuscript does not contain previously published material, and is not under consideration for publication elsewhere. Each author has made an important scientific contribution to the study and is thoroughly familiar with the primary data. All authors listed have read the complete manuscript and have approved the submission of the paper. The manuscript is a truthful original work without fabrication, fraud, or plagiarism. All authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiGang Xu.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Xu, W., Wang, H. et al. Pyramiding expression of maize genes encoding phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) synergistically improve the photosynthetic characteristics of transgenic wheat. Protoplasma 251, 1163–1173 (2014). https://doi.org/10.1007/s00709-014-0624-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0624-1

Keywords

Navigation