Skip to main content
Log in

Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio rootstocks in response to salinity

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Pistachio, one of the important tree nuts, is cultivated in arid and semi-arid regions where salinity is the most common abiotic stress encountered by this tree. However, the mechanisms underlying salinity tolerance in this plant are not well understood. In the present study, five 1-year-old pistachio rootstocks (namely Akbari, Badami, Ghazvini, Kale-Ghouchi, and UCB-1) were treated with four saline water regimes (control, 8, 12, and 16 dS m−1) for 100 days. At high salinity level, all rootstocks showed decreased relative water content (RWC), total chlorophyll content (TCHC), and carotenoids in the leaf, while ascorbic acid (AsA) and total soluble proteins (TSP) were reduced in both leaf and root organs. In addition, the total phenolic compounds (TPC), proline, glycine betaine, total soluble carbohydrate (TSC), and H2O2 content increased under salinity stress in all studied rootstocks. Three different ion exclusion strategies were observed in the studied rootstocks: (i) Na+ exclusion in UCB-1, because most of its Na+ is retained in the roots; (ii) Cl exclusion in Badami, in which most of its Cl remained in the roots; and (iii) similar concentrations of Na+ and Cl were observed in the leaves and roots of Ghazvini, Akbari, and Kale-Ghouchi. Transport capacity (ST value) of K+ over Na+ from the roots to the leaves was more observable in UCB-1 and Ghazvini. Overall, the root system cooperated more effectively in UCB-1 and Badami for retaining and detoxifying an excessive amount of Na+ and Cl. The results presented here provide important inputs to better understand the salt tolerance mechanism in a tree species for developing more salt-tolerant genotypes. Based on the results obtained here, the studied rootstocks from tolerant to susceptible are arranged as follows: UCB-1 > Badami > Ghazvini > Kale-Ghouchi > Akbari.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agastian P, Kingsley S, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287–290

    Article  CAS  Google Scholar 

  • Aghaleh M, Niknam V, Ebrahimzadeh H, Razavi K (2009) Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biol Plant 53:243–248

    Article  CAS  Google Scholar 

  • Ahmad P, Jhon R (2005) Effect of salt stress on growth and biochemical parameters of Pisum sativum L. (Einfluss von Salzstress auf Wachstum und biochemische Parameter von Pisum sativum L.) Arch Agron Soil Sci 51:665–672

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D et al (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Latef AAA, Hashem A, Abd-Allah EF, Gucel S, Tran L-SP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Akram NA, Ashraf M, Al-Qurainy F (2012) Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes. Sci Hortic 142:143–148

    Article  CAS  Google Scholar 

  • Aliakbarkhani ST, Akbari M, Hassankhah A, Talaie A, Moghadam MF (2015) Phenotypic and genotypic variation in Iranian pistachios. J Genet Eng Biotechnol 13:235–241

    Article  Google Scholar 

  • Aliakbarkhani ST, Farajpour M, Asadian AH, Aalifar M, Ahmadi S, Akbari M (2017) Variation of nutrients and antioxidant activity in seed and exocarp layer of some Persian pistachio genotypes. Ann Agric Sci 62:39–44

    Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Athar H-u-R, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63:224–231

    Article  CAS  Google Scholar 

  • Badran EG, Abogadallah GM, Nada RM, Alla MMN (2015) Role of glycine in improving the ionic and ROS homeostasis during NaCl stress in wheat. Protoplasma 252:835–844

    Article  PubMed  CAS  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bettaieb Rebey I, Bourgou S, Rahali FZ, Msaada K, Ksouri R, Marzouk B (2017) Relation between salt tolerance and biochemical changes in cumin (Cuminum cyminum L.) seeds. J Food Drug Anal 25:391–402

    Article  PubMed  CAS  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  PubMed  CAS  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S (2015) Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. Ann Bot 115:481–494

    Article  PubMed  Google Scholar 

  • Chakraborty K, Bose J, Shabala L, Shabala S (2016) Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. J Exp Bot 67:4611–4625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chartzoulakis K (2005) Salinity and olive: growth, salt tolerance, photosynthesis and yield. Agric Water Manag 78:108–121

    Article  Google Scholar 

  • FAO (2014) www.faostat.fao.org

  • Fayez KA, Bazaid SA (2014) Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 13:45–55

    Google Scholar 

  • Ferguson L, Poss J, Grattan S, Grieve C, Wang D, Wilson C, Donovan T, Chao C-T (2002) Pistachio rootstocks influence scion growth and ion relations under salinity and boron stress. J Am Soc Hortic Sci 127:194–199

    CAS  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431

    Article  PubMed  CAS  Google Scholar 

  • Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Curr Opin Plant Biol 14:296–302

    Article  PubMed  CAS  Google Scholar 

  • Gil R, Boscaiu M, Lull C, Bautista I, Lidón A, Vicente O (2013) Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Funct Plant Biol 40:805–818

    CAS  Google Scholar 

  • Guo Q, Meng L, Mao P-C, Tian X-X (2015) Salt tolerance in two tall wheatgrass species is associated with selective capacity for K+ over Na+. Acta Physiol Plant 37:1–9

    Article  CAS  Google Scholar 

  • Hajiboland R, Norouzi F, Poschenrieder C (2014) Growth, physiological, biochemical and ionic responses of pistachio seedlings to mild and high salinity. Trees 28:1065–1078

    Article  CAS  Google Scholar 

  • Hamouda I, Badri M, Mejri M, Cruz C, Siddique K, Hessini K (2015) Salt tolerance of Beta macrocarpa is associated with efficient osmotic adjustment and increased apoplastic water content. Plant Biol 18:369–375

    Article  PubMed  CAS  Google Scholar 

  • Hichem H, Mounir D, Naceur EA (2009) Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Ind Crop Prod 30:144–151

    Article  CAS  Google Scholar 

  • Kamiab F, Talaie A, Khezri M, Javanshah A (2014) Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings. Plant Growth Regul 72:257–268

    Article  CAS  Google Scholar 

  • Karimi HR, Nasrolahpour-Moghadam S (2016) Study of sex-related differences in growth indices and eco-physiological parameters of pistachio seedlings (Pistacia vera cv. Badami-Riz-e-Zarand) under salinity stress. Sci Hortic 202:165–172

    Article  Google Scholar 

  • Katare DP, Nabi G, Azooz M, Aeri V, Ahmad P (2012) Biochemical modifications and enhancement of psoralen content in salt-stressed seedlings of Psoralea corylifolia Linn. J Funct Environ Bot 2:65–74

    Article  Google Scholar 

  • Kchaou H, Larbi A, Gargouri K, Chaieb M, Morales F, Msallem M (2010) Assessment of tolerance to NaCl salinity of five olive cultivars, based on growth characteristics and Na+ and Cl− exclusion mechanisms. Sci Hortic 124:306–315

    Article  CAS  Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    Article  CAS  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M (2012) Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide 27:210–218

    Article  PubMed  CAS  Google Scholar 

  • Khoyerdi FF, Shamshiri MH, Estaji A (2016) Changes in some physiological and osmotic parameters of several pistachio genotypes under drought stress. Sci Hortic 198:44–51

    Article  CAS  Google Scholar 

  • Kim H-J, Fonseca JM, Choi J-H, Kubota C, Kwon DY (2008) Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.) J Agric Food Chem 56:3772–3776

    Article  PubMed  CAS  Google Scholar 

  • Kordrostami M, Rabiei B, Hassani Kumleh H (2017) Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. Physiol Mol Biol Plants 23:529–544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Jia H, Wang J, Cao Q, Wen Z (2014) Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root. Protoplasma 251:899–912

    Article  PubMed  CAS  Google Scholar 

  • Li C, Sun X, Chang C, Jia D, Wei Z, Li C, Ma F (2015) Dopamine alleviates salt-induced stress in Malus hupehensis. Physiol Plant 153:584–602

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy, current protocols in food analytical chemistry, Wiley, New York

  • Lim J-H, Park K-J, Kim B-K, Jeong J-W, Kim H-J (2012) Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem 135:1065–1070

    Article  PubMed  CAS  Google Scholar 

  • López-Berenguer C, Martínez-Ballesta MadC, Moreno DA, Carvajal M, García-Viguera C (2009) Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J Agric Food Chem 57:572–578

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Choudhuri M (1985) Implication of hydrogen peroxide–ascorbate system on membrane permeability of water stressed Vigna seedlings. New Phytol 99:355–360

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem 96:66–73

    Article  CAS  Google Scholar 

  • Nemati I, Moradi F, Gholizadeh S, Esmaeili MA, Bihamta MR (2011) The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheaths and roots of rice (Oryza sativa L.) seedlings. Plant Soil Environ 57:26–33

    Article  CAS  Google Scholar 

  • Pan Y-Q, Guo H, Wang S-M, Zhao B, Zhang J-L, Ma Q, Yin H-J, Bao A-K (2016) The photosynthesis, Na+/K+ homeostasis and osmotic adjustment of Atriplex canescens in response to salinity. Front Plant Sci 7:848

    PubMed  PubMed Central  Google Scholar 

  • Parida AK, Jha B (2013) Inductive responses of some organic metabolites for osmotic homeostasis in peanut (Arachis hypogaea L.) seedlings during salt stress. Acta Physiol Plant 35:2821–2832

    Article  CAS  Google Scholar 

  • Parida A, Das AB, Das P (2002) NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J Plant Biol 45:28–36

    Article  CAS  Google Scholar 

  • Petridis A, Therios I, Samouris G, Tananaki C (2012) Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environ Exp Bot 79:37–43

    Article  CAS  Google Scholar 

  • Rasool S, Ahmad A, Siddiqi T, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35:1039–1050

    Article  CAS  Google Scholar 

  • Raymond MJ, Smirnoff N (2002) Proline metabolism and transport in maize seedlings at low water potential. Ann Bot 89:813–823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ 37:1059–1073

    Article  PubMed  CAS  Google Scholar 

  • Saied AS, Keutgen AJ, Noga G (2005) The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’and ‘Korona’. Sci Hortic 103:289–303

    Article  CAS  Google Scholar 

  • Sandhu D, Cornacchione MV, Ferreira JF, Suarez DL (2017) Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes. Sci Rep 7:42958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sayyad-Amin P, Borzouei A, Jahansooz M-R, Parsaeiyan M (2016) Root biochemical responses of grain and sweet-forage sorghum cultivars under saline conditions at vegetative and reproductive phases. Braz J Bot 39:115–122

    Article  Google Scholar 

  • Taïbi K, Taïbi F, Ait Abderrahim L, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Article  CAS  Google Scholar 

  • Talebi M, Akbari M, Zamani M, Sayed-Tabatabaei BE (2016) Molecular polymorphism in Pistacia vera L. using non-coding regions of chloroplast DNA. J Genet Eng Biotechnol 14:31–37

    Article  Google Scholar 

  • Tang J, Camberato JJ, Yu X, Luo N, Bian S, Jiang Y (2013) Growth response, carbohydrate and ion accumulation of diverse perennial ryegrass accessions to increasing salinity. Sci Hortic 154:73–81

    Article  CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009) Hydrogen peroxide-and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. J Plant Physiol 166:1904–1913

    Article  PubMed  CAS  Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl− ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsabarducas V, Chatzistathis T, Therios I, Koukourikou-Petridou M, Tananaki C (2015) Differential tolerance of 3 self-rooted Citrus limon cultivars to NaCl stress. Plant Physiol Biochem 97:196–206

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Zheng W, Ren J, Zhang C (2002) Selectivity of various types of salt-resistant plants for K+ over Na+. J Arid Environ 52:457–472

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Yin R, Bai T, Ma F, Wang X, Li Y, Yue Z (2010) Physiological responses and relative tolerance by Chinese apple rootstocks to NaCl stress. Sci Hortic 126:247–252

    Article  CAS  Google Scholar 

  • Yu J, Sun L, Fan N, Yang Z, Huang B (2015) Physiological factors involved in positive effects of elevated carbon dioxide concentration on Bermudagrass tolerance to salinity stress. Environ Exp Bot 115:20–27

    Article  CAS  Google Scholar 

  • Yuan G, Wang X, Guo R, Wang Q (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121:1014–1019

    Article  CAS  Google Scholar 

  • Zarza X, Atanasov KE, Marco F, Arbona V, Carrasco P, Kopka J, Fotopoulos V, Munnik T, Gómez-Cadenas A, Tiburcio AF, Alcázar R (2017) Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant Cell Environ 40:527–542

    Article  PubMed  CAS  Google Scholar 

  • Zeng C-L, Liu L, Wang B-R, Wu X-M, Zhou Y (2011) Physiological effects of exogenous nitric oxide on Brassica juncea seedlings under NaCl stress. Biol Plant 55:345–348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Akbari or Nasser Mahna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Néstor Carrillo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, M., Mahna, N., Ramesh, K. et al. Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio rootstocks in response to salinity. Protoplasma 255, 1349–1362 (2018). https://doi.org/10.1007/s00709-018-1235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-018-1235-z

Keywords

Navigation