Skip to main content
Log in

Origin of monazite–xenotime–zircon–fluorapatite assemblages in the peraluminous Melechov granite massif, Czech Republic

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

This study describes and discusses the origin of fluorapatite–zircon–monazite–xenotime associations from the Melechov granite massif, Czech Republic. The Melechov massif consists of a series of peraluminous two-mica granite intrusions subdivided into the Stvořidla, Melechov, Kouty, and Lipnice granites. Fluorapatite in these granites occurs in three population groups: (1) large grains (100–600 μm) with variable amounts of monazite and zircon inclusions and grains along the rim of the fluorapatite ranging from many to none; (2) small (<50 μm), inclusion-free grains; and (3) very small (<2 μm) grains scattered throughout the plagioclase, which occur mainly in samples from the Melechov and Stvořidla granites. Rare xenotime inclusions are found in large fluorapatite grains from the Melechov and Stvořidla granites. Both the large and small fluorapatite grains have the same compositional range in Y, the REE, and Mn. Petrographic textures and mineral composition indicate that the monazite and zircon inclusions were overgrown during fluorapatite growth. Evidence for this origin includes: (1) Zircon cannot be metasomatically induced to form as inclusions in fluorapatite; (2) there is no difference either in the Y and the REE or, more importantly, in the Th and U content between monazite grains associated with and not associated with fluorapatite; and (3) distinctive layered, concentric textures in the fluorapatite in which the monazite and zircon inclusions are often seen to concentrate. These observations suggest that the monazite and zircon grains initially grew on the surface of the fluorapatite grain and were later enclosed by new layers of fluorapatite as the grain continued to grow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andrehs G, Heinrich W (1998) Experimental determination of REE distributions between monazite and xenotime: potential for temperature-calibrated geochronology. Chem Geol 149:83–96

    Article  Google Scholar 

  • Bea F, Fershtater G, Corretge G (1992) The geochemistry of phosphorus in granite rocks and the effect of aluminium. Lithos 29:43–56

    Article  Google Scholar 

  • Bea F, Pereira MD, Corretge LG, Fershtater GB (1994) Differentiation of strongly peraluminous, perphosphorous granites: the Pedrobernardo pluton, central Spain. Geochim Cosmochim Acta 58:2609–2627

    Article  Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths: implications for the chemistry of crustal melts. J Petrol 37:521–552

    Article  Google Scholar 

  • Belousova EA, Walters S, Griffin WL, O’Reilly SY (2001) Trace-element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Aus J Earth Sci 48:603–619

    Article  Google Scholar 

  • Beneš K (1963) Explanations to the geological map of Czechoslovakia 1: 200 000, sheet M-33-XXII Jihlava. Czechoslovak Academy of Science, Praha

    Google Scholar 

  • Breiter K, Gnojek I, Chlupáčová M (1998) Radiometric patterns constraints for the magmatic evolution of the two-mica granites in the Central Moldanubian Pluton. Bulletin of the Czech Geological Institute 73:301–311

    Google Scholar 

  • Breiter K, Fryda J, Leichmann J (2002) Phosphorus and rubidium in alkali feldspars: case studies and possible genetic interpretation. Bull Czech Geol Surv 77:93–104

    Google Scholar 

  • Breiter K, Sulovský P (2005) Geochronology of the Melechov granite massif. Geological research reports for the year 2004. Czech Geological Survey, Prague, pp 16–19

    Google Scholar 

  • Breiter K, Müller A, Leichmann J, Gabasova A (2005) Textural and chemical evolution of a fractionated granitic system: the Podlesi stock, Czech Republic. Lithos 80:323–345

    Article  Google Scholar 

  • Broska I, Siman P (1998) The breakdown of monazite in the West-Carpathian Veporic orthogneisses and Tatric granites. Geol Carpath 49:161–167

    Google Scholar 

  • Broska I, Kubiš M, Williams CT, Konečný P (2002) The compositions of rock-forming and accessory minerals from the Gemeric granites (Hnilec area, Gemeric Superunit, Western Carpathians). Bull Czech Geol Surv 77:147–155

    Google Scholar 

  • Broska I, Williams CT, Uher P, Konečný P, Leichmann J (2004) The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: the role of apatite and P-bearing feldspar. Chem Geol 205:1–15

    Article  Google Scholar 

  • Dempster TJ, Jolivet M, Tubrett MN, Braithwaite CJR (2003) Magmatic zoning in apatite: a monitor of porosity and permeability changes in granites. Contrib Mineral Petrol 145:568–577

    Article  Google Scholar 

  • Dini A, Rocchi S, Westerman DS (2004) Reaction microtextures of REE-Y-Th-U accessory minerals in the Monte Capanne pluton (Elba Island, Italy): a possible indicator of hybridization processes. Lithos 78:101–118

    Article  Google Scholar 

  • Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Min Pet 61:67–96

    Article  Google Scholar 

  • Finger F, Broska I, Roberts MP, Schermaier A, Steyrer HP (1998) Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. Am Mineral 83:248–258

    Google Scholar 

  • Green TH, Watson EB (1982) Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to ‘orogenic’ rock series. Contrib Mineral Petrol 79:96–105

    Article  Google Scholar 

  • Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib Mineral Petrol 84:66–72

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behaviour of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1468–1477

    Article  Google Scholar 

  • Harlov DE, Förster H-J (2002) High-grade fluid metasomatism on both local and a regional scale: the Seward Peninsula, Alaska, and the Val Strona di Omegna, Ivrea-Verbano zone, northern Italy. Part II: Phosphate mineral chemistry. J Petrol 43:801–824

    Article  Google Scholar 

  • Harlov DE, Förster HJ (2003) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part II. Fluorapatite. Am Mineral 88:1209–1229

    Google Scholar 

  • Harlov DE, Förster H-J, Nijland TG (2002a) Fluid-induced nucleation of REE-phosphate minerals in apatite: Nature and experiment. Part I. Chlorapatite. Am Mineral 87:245–261

    Google Scholar 

  • Harlov DE, Andersson UB, Förster H-J, Nyström JO, Dulski P, Broman C (2002b) Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chem Geol 191:47–72

    Article  Google Scholar 

  • Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286

    Article  Google Scholar 

  • Harlov DE, Johansson L, van den Kerkhof A, Förster H-J (2006) Transformation of a granitic gneiss to charnockite, Söndrum stenhuggeriet, Halmstad, SW Sweden: the role of advective fluid flow and diffusion during localized solid state dehydration. J Petrol 47:3–33

    Article  Google Scholar 

  • Harlov DE, Marshall H, Hanel R (2007) Fluorapatite–monazite relationships in granulite-facies metapelites, Schwarzwald, southwest Germany. Mineral Mag 71:143–154

    Article  Google Scholar 

  • Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4:43–47

    Article  Google Scholar 

  • Jarosewich E, Boatner LA (1991) Rare-earth element reference samples for electron microprobe analysis. Geostand Newsl 15:397–399

    Article  Google Scholar 

  • Kontak DJ (1990) The East Kemptville topaz–muscovite leucogranite, Nova Scotia I. Geological setting and whole rock geochemistry. Can Mineral 28:787–825

    Google Scholar 

  • Kontak DJ, Martin RF, Richard L (1996) Patterns of phosphorous enrichment in alkali feldspar, South Mountain batholith, Nova Scotia, Canada. Eur J Mineral 8:805–824

    Google Scholar 

  • Krupička J (1968) The contact zone in the north of the Moldanubian Pluton. Krystalinikum 6:7–40

    Google Scholar 

  • Krupička J (1969) Explanations to the geological map of Czechoslovakia 1: 25 000, sheet M-33–92-A-a Havl. Brod (in Czech). MS Ústřední ústav geologický Praha, Geofond P 21779

  • Matějka D (1991) Geochemical and petrographic characteristics of the Moldanubicum south of Veselí nad Luznicí and the relationship of the Ševětín granodiorite to the rocks of the Eisgarn type. PhD thesis, Faculty of Science of the Charles University, Praha

  • Matějka D (1997) The chemistry if the main granite types in the northern part of the Modanubian pluton. Geological research reports for the year 1996, pp 4447–4448

  • Matějka D, Janoušek V (1998) Whole-rock geochemistry and petrogenesis of granites from the northern part of the Moldanubian Batholith (Czech Republic). Acta Univ Carol Geol 42:73–79

    Google Scholar 

  • Miller CF, Mittlefehldt DW (1982) Depletion of light rare-earth elements in felsic magmas. Geology 10:129–133

    Article  Google Scholar 

  • Mitrenga P, Rejl L, Weiss J (1979) Geology of the wider surroundings of Humpolec (in Czech). Proceedings “Příspěvky ke geologickému výzkumu jihozápadní části Českomoravské vrchoviny”. Jihočeské muzeum, České Budějovice

  • Mlcoch B, Stepánek P, Breiter K (1995) Brief petrological and petrochemical characteristics of main types of the Melechov massif (in Czech). MS Czech Geological Survey Praha, Geofond P 86603/2

  • Montel J-M (1986) Experimental determination of the solubility of Ce-monazite in SiO2-Al2O3-K2O-Na2O melts at 800 °C, 2 kbar, under H2O-saturated conditions. Geology 14:659–662

    Article  Google Scholar 

  • Montel J-M (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146

    Article  Google Scholar 

  • Novotný P (1980) Geology and petrography of the Central Moldanubian pluton between Melechov and Svetlá nad Sázavou (in Czech). MS Ústřední ústav geologický Praha, Geofond P 53202

  • Novotný P (1985) Peraluminous granites of the Melechov massif (in Czech). Geological Research reports for the year 1984. Czech Geological Survey, Prague, pp 31–32

    Google Scholar 

  • Pettke T, Audétat A, Schaltegger U, Heinrich CA (2005) Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole granite (NSW, Australia). Part II: Evolving zircon and thorite trace element chemistry. Chem Geol 220:191–213

    Article  Google Scholar 

  • Pichavant M, Montel JM, Richard LR (1992) Apatite solubility in peraluminous liquids—experimental data and an extension of the Harrison–Watson model. Geochim Cosmochim Acta 56:3855–3861

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1985) “PAP” (ϕ–ρ–Z) procedure for improved quantitative microanalysis. In: Armstrong JT (ed.) Microbeam analysis. San Francisco Press, San Francisco, pp 104–106

    Google Scholar 

  • Procházka V (2002) The accessory minerals in granitoids of the Melechov massif (in Czech). Diploma thesis, Faculty of Science of the Charles University, Praha, Czech Republic

  • Procházka V, Matějka D (2006) Rock-forming accessory minerals in the granites of Melechov massif. Acta Univ Carol Geol 48:71–79

    Google Scholar 

  • Rajlich P (2001) Structural–geological mapping for localization of test polygons in the Melechov massif area. MS Czech Geological Survey, Praha

  • Rapp RP, Watson EB (1986) Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib Mineral Petrol 94:304–316

    Article  Google Scholar 

  • Rapp RP, Ryerson FJ, Miller CF (1987) Experimental evidence bearing on the stability of monazite during crustal anatexis. Geophys Res Lett 14:307–310

    Article  Google Scholar 

  • Sha LK, Chappell BW (1999) Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochim Cosmochim Acta 63:3861–3881

    Article  Google Scholar 

  • Scharbert S, Veselá M (1990) Rb-Sr systematics of intrusive rocks from the Moldanubicum around Jihlava. In: Minaríková D, Lobitzer H (eds) 30 years of geol. cooperation between Austria and Czechoslovakia, Ústřední ústav geologický Praha, pp 262–271

  • Schaltegger U, Pettke T, Audétat A, Reusser E, Heinrich CA (2005) Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia). Part I: Crystallization of zircon and REE-phosphates over three million years—a geochemical and U-Pb geochronological study. Chem Geol 220:215–235

    Article  Google Scholar 

  • Schermerhorn LJG (1956) Igneous, metamorphic and ore geology of the Castro Daire–Sao Pedro do Sul–Satao region (Northern Portugal). Commun Serv Geol Portugal, t.XXXVII, 617 p

  • Schulmann K, Venera Z, Konopásek J, Lexa O (1998) Structural and geological investigation of the Melechov massif (in Czech). MS Faculty of Science of the Charles University, Geofond P 93389

  • Stormer JC, Pierson ML, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am Mineral 78:641–648

    Google Scholar 

  • Veselá M (1991) Geological map of the Czech Republic 1:50,000, sheet 23–23 Jihlava. Czech Geological Survey

  • Watson EB (1979) Apatite saturation in basic to intermediate magmas. Geophys Res Lett 6:937–940

    Article  Google Scholar 

  • Watson EB, Capobianco CJ (1981) Phosphorus and rare earth elements in felsic magmas: an assessment of the role of apatite. Geochim Cosmochim Acta 45:2349–2358

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited; temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Wolf MB, London D (1994) Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanisms. Geochim Cosmochim Acta 58:4127–4145

    Article  Google Scholar 

  • Wolf MB, London D (1995) Incongruent dissolution of REE- and Sr-rich apatite in peraluminous granitic liquids: differential apatite, monazite, and xenotime solubilities during anatexis. Am Mineral 80:765–775

    Google Scholar 

  • Woller F, Skopový J (2000) A critical recherche of archived geological information—the Melechov massif (in Czech). Ústav jaderného vyzkumu, Rez

  • Žáček M, Páša J (2006) Geochemical investigation in the Melechov massif area (in Czech). MS Office for Disposal of Radioactive Waste (SURAO), Praha, Czech Republic

Download references

Acknowledgement

We thank Dieter Rhede and Oona Appelt for support with the microprobe. Helga Kemnitz is acknowledged for assistance with the SEM. Erin Dopfel is thanked for taking a series of cathode-luminescence images of each of the samples. Daniel Garcia, Fernando Bea, Frank Poitrasson, and two anonymous reviewers are thanked for their perceptive reviews of earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Harlov.

Additional information

Editorial handling: A. Möller

Electronic supplementary material

Below is the linked to the electronic supplementary material.

Appendix I

Feldspar analyses (XLS 22 kb)

Appendix II

Mean siderophyllite compositions (wt%) (XLS 24 kb)

Appendix III

Fluorapatite Analyses (XLS 979 kb)

Appendix IV

Monazite analyses (XLS 161 kb)

Appendix V

Zircon analyses (XLS 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harlov, D.E., Procházka, V., Förster, HJ. et al. Origin of monazite–xenotime–zircon–fluorapatite assemblages in the peraluminous Melechov granite massif, Czech Republic. Miner Petrol 94, 9–26 (2008). https://doi.org/10.1007/s00710-008-0003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-008-0003-8

Keywords

Navigation