Skip to main content
Log in

Origin of siderite mineralisation in Petrova and Trgovska Gora Mts., NW Dinarides

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Petrova and Trgovska Gora Mts. (Gora=Mountain) are Variscan basement units incorporated into the northwestern Dinarides during the Alpine orogeny. They host numerous siderite-quartz-polysulphide, siderite-chalcopyrite, siderite-galena and barite veins, as well as stratabound hydrothermal-replacement ankerite bodies within carbonates in non-metamorphosed, flysch-like Permo-Carboniferous sequences. The deposits have been mined for Cu, Pb, Ag and Fe ores since Medieval times. Fluid inclusion studies of quartz from siderite-polysulphide-quartz and barite veins of both regions have shown the presence of primary aqueous NaCl−CaCl2±MgCl2−H2O±CO2 inclusions. The quartz-sulphide stage of both regions show variable salinities; 2.7–26.2 wt% NaCl eq. for the Trgovska Gora region and 3.4–23.4 wt% NaCl eq. for the Petrova gora region, and similar homogenisation temperatures (100–230°C). Finally, barite is precipitated from low salinity-low temperature solutions (3.7–15.8 wt % NaCl equ. and 115–145°C). P-t conditions estimated via isochore construction yield formation temperatures between 180–250°C for the quartz-sulphide stage and 160–180°C for the barite stage, using a maximum lithostatic pressure of 1 kbar (cc. 3 km of overburden). The sulphur isotope composition of barite from both deposits indicates the involvement of Permian seawater in ore fluids. This is supported by the elevated bromium content of the fluid inclusion leachates (120–660 ppm in quartz, 420–960 ppm in barite) with respect to the seawater, indicating evaporated seawater as the major portion of the ore-forming fluids. Variable sulphur isotope compositions of galena, pyrite and chalcopyrite, between −3.2 and +2.7‰, are interpreted as a product of incomplete thermal reduction of the Permian marine sulphate mixed with organically- and pyrite-bound sulphur from the host sedimentary rocks. Ore-forming fluids are interpreted as deep-circulating fluids derived primarily from evaporated Permian seawater and later modified by interaction with the Variscan basement rocks. 40Ar/39Ar data of the detrital mica from the host rocks yielded the Variscan age overprinted by an Early Permian tectonothermal event dated at 266–274 Ma. These ages are interpreted as those reflecting hydrothermal activity correlated with an incipient intracontinental rifting in the Tethyan domain. Nevertheless, 75 Ma recorded at a fine-grained sericite sample from the alteration zone is interpreted as a result of later resetting of white mica during Campanian opening/closure of the Sava back arc in the neighbouring Sava suture zone (Ustaszewski et al. 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194:3–23

    Article  Google Scholar 

  • Barnes HL (1997) Geochemistry of Hydrothermal Ore Deposits, 3rd edn. Wiley, New York pp 972

    Google Scholar 

  • Bobos I, Vieillard P, Charoy B, Noronha F (2007) Alteration of spodumene to cookeite and its pressure and temperature stability conditions in Li-bearing aplite-pegmatites from Northern Portugal. Clays Clay Miner 55(3):295–310

    Article  Google Scholar 

  • Bohannon RG, Naeser CW, Schmidt DL, Zimmermann RA (1989) The timing of uplift, volcanism, and rifting peripheral to the Red Sea: a case for passive rifting? J Geophys Res 94:1683–1701

    Article  Google Scholar 

  • Borojević Šoštarić S (2004) Genesis of the siderite-barite-polysulphide deposits within the Palaeozoicblocks of Inner Dinarides (in Croatian). MsC Thesis, University of Zagreb, p 120, (unpublished)

  • Bottrell SH, Yardley BWD, Bucley F (1988) A modified crush-leach method for the analysis of fluid inclusion electrolytes. Bull Mineral 111:279–290

    Google Scholar 

  • Can I (2002) A new improved Na/K geothermometer by artificial neutral networks. Geothermics 31:751–760

    Article  Google Scholar 

  • Channer DMDeR, Bray CJ, Spooner ETC (1999) Integrated cation-anion volatile fluid inclusion analysis by gas and ion chromatography; methodology and examples. Chem Geol 154:59–82

    Article  Google Scholar 

  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260

    Article  Google Scholar 

  • Collins AG (1975) The geochemistry of oilfield waters. Elsevier, New York, pp 496

    Google Scholar 

  • Collins PLF (1979) Gas hydrates in CO2 bearing fluid inclusions and the use of freezing data to estimating of salinity. Econ Geol 74:1435–1444

    Article  Google Scholar 

  • Devide-Nedéla D (1953) Ore field Bešlinac (in Croatian). Unpublished report, Geol survey Zagreb

  • Ðurđanović Ž (1968) Conodonten des Unterdevons und Unterkarbons westlich von Dvor na Uni (Kroatien-Jugoslawien). Geol Vjesnik, Zagreb 21:83–103

    Google Scholar 

  • Ðurđanović Ž (1973) About the Palaeozoic and the Triassic of Medvednica Mountain and the area near Dvor na Uni on the basis of Conodonts. Geol Vjesnik, Zagreb 25:29–51

    Google Scholar 

  • Ebner F, Cerny I, Eichhorn R, Gõtzinger M, Paar W, Prochaska W, Weber L (1999) Mineral resources in the Eastern Alps and adjoining areas. Mitt Österr Geol Ges, Wien 92:157–184

    Google Scholar 

  • Ebner F, Mali H, Prochaska W (2003) Fieldtrip Guidebook, Geodynamics and Ore Deposit Evolution of the Alpine-Balkan-Carpathian-Dinaride Province. Final GEODE-ABCD 2003 Workshop, Inst Geol Paleontol University of Salzburg, p 44

  • Ebner F, Vozarova A, Kovacs S, Krautner HG, Krstić B, Szederkeny T, Jamićić J, Balen D, Belak B, Trajanova M (2008) Devonian-Carboniferous pre-flysch and flysch environments in the Circum Pannonian Region. Geol Carpathica 59:159–195

    Google Scholar 

  • Grecula P, Abonyi A, Abonyiová M, Antaš J, Bartalský B, Bartalský J, Dianiška I, Drnzík E, Ïuïa R, Gargulák M, Gazdaèko L, Hudáèek J, Kobulský J, Lörincz L, Macko J, Návesòák D, Németh Z, Novotný L, Radvanec M, Rojkoviè I, Rozložník L, Rozložník O, Varèek C, Zlocha J (1995) Mineral deposits of the Slovak Ore Mountains. Mineral Slovaca, Monograph, vol 1. Bratislava, p 834

  • Haas J, Kovács S (2001) The Dinaridic–Alpine connection—as seen from Hungary. Acta Geol Hung 44:345–362

    Google Scholar 

  • Hosieni K, Reed AH, Scanlon MW (1985) Thermodynamics of the lambda transition and the equation of state of quartz. Am Mineral 70:782–793

    Google Scholar 

  • Hurai V, Harèová E, Huraiová M, Ozdín D, Prochaska W, Wiegerová V (2002) Origin of siderite veins in the Western Carpathians I. P-T-X-δ13C-δ18O relations in ore-forming brines of the Rudòany deposits. Ore Geol Rev 21:67–101

    Article  Google Scholar 

  • Hurai V, Lexa O, Schulmann K, Montigny R, Prochaska W, Frank W, Konecny P, Král J, Thomas R, Chovan M (2008a) Mobilization of ore fluids during Alpine metamorphism: evidence from hydrothermal veins in the Variscan basement of Western Carpathians, Slovakia. Geofluids 8:181–207

    Article  Google Scholar 

  • Hurai V, Prochaska W, Lexa O, Schulmann K, Thomas R, Ivan P (2008b) High-density nitrogen inclusions in barite from a giant siderite vein: implications for Alpine evolution of the Variscan basement of Western Carpathians, Slovakia. J Metamorphic Geol 26:487–498

    Article  Google Scholar 

  • Janković S (1987) Mineral deposits of the Tethyan Eurasian metallogenic belt between the Alps and the Pamirs (selected example). In: Janković S (ed) Geotectonic evolution and metallogeny of Mediterranean and SW Asia. UNESCO/IGCP Project No 169, Fac Min Geol, Belgrade, p 182

    Google Scholar 

  • Janković S (1997) The Carpatho-Balkanides and adjacent area: a sector of the Tethyan Eurasian metallogenic belt. Mineral Deposita 32:426–433

    Article  Google Scholar 

  • Jurković I (1958) Metalogeny of Petrova Gora Mt. in southwestern Croatia (in Croatian). Geol vjesnik, Zagreb 11:143–228

    Google Scholar 

  • Jurković I (1959) Polymetal Paragenesis of the ore occurrence in the catchment area of the Srebrenjak brook south of the town Dvor na Uni in Croatia (in Croatian). Geol vjesnik, Zagreb 13:149–161

    Google Scholar 

  • Jurković I (1962) The results of ore deposit research in Republic of Croatia (in Croatian). Geol vjesnik, Zagreb 15:249–294

    Google Scholar 

  • Jurković I (1988) The Hercynian metallogenesis of the ore deposits of Trgovska Gora in Croatia (in Croatian). Geol vjesnik, Zagreb 41:369–393

    Google Scholar 

  • Jurković I, Šinkovec B (1978) Development of ore deposit research in Republic of Croatia for the last 25 years (1951–1976) (in Croatian). Geol vjesnik, Zagreb 30:649–655

    Google Scholar 

  • Jurković I, Durn G (1988) Lead deposit in the Zrin District of Trgovska Gora in Croatia. Geol vjesnik, Zagreb 41:317–339

    Google Scholar 

  • Jurković I, Pamić J (2001) Geodynamics and metallogeny of Variscan complexes of the Dinarides and South Tisia as related to plate tectonics. Nafta, Zagreb 52:267–284

    Google Scholar 

  • Karamata S, Olujić J, Filipović I (2002) The Palaeozoic units of Dinarides and the Vardar zone. Proceedings of XVII. Congress of Carpathian–Balkan Geological Association, Bratislava, Geol Carpathica Spec Publ 53: p 6

  • Korolija B, Živaljević T, Šimunić A (1981) Explanatory notes for the geological map 1:100000, sheet Slunj. Geol survey, Belgrade, p 44

    Google Scholar 

  • Kovács S, Brezsnyánszky K, Buda G, Haas J, Szederkényi T, Császár G, Harangi S, Márton E, Nagymarosy A, Pelikán P, Török Á (2002) Tectonostratigraphic terranes and zones juxtaposed along the Mid-Hungarianline: their contrasting evolution and relationships. Geol Carpathica spec publ, Proceedings of XVII. Congress of Carpathian–Balkan Geological Association, Bratislava vol 53: p 6

  • Krauskopf KB (1982) Introduction to geochemistry, 2nd edition. Graw-Hill International Series the Earth and Planetary Science, p 616

  • Laube N, Frimmel HE, Hoernes S (1995) Oxygen and carbon isotopic study on the genesis of the Steirischer Erzberg siderite deposit (Austria). Mineral Deposita 30:285–293

    Article  Google Scholar 

  • Li YB, Liu JM (2006) Calculation of sulfur isotope fractionation in sulfides. Geochim Cosmochim Acta 70:1789–1795

    Article  Google Scholar 

  • Ludwig KR (2001) Using Isoplot/Ex, Version 2.01: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1a, Berkeley, p 47

    Google Scholar 

  • Ludwig KR (2005) Isoplot/EX rev. 3.32: A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center Special Publication 4 Berkeley

  • Majer V (1964) Petrography of Palaeozoic sediments from the North-Eastern parts of the Trgovska Gora Mt. (on Croatian with English summary). Geol vjesnik Zagreb 17:79–92

    Google Scholar 

  • Marković S (2002) Croatian Mineral Raw Materials (in Croatian). Institute of Geology, Zagreb ISBN 953-6907-01, p 544

  • McCaffrey MA, Lazar B, Holland HD (1987) The evaporation path of seawater and the coprecipitation of Br-and K+ with halite. J Sedim Petrol 57:928–937

    Google Scholar 

  • McDougall I, Harrison MT (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press Spec edit, p 269

  • Naden J (1996) CalcicBrine: a Microsoft Excel 5.0 Add-in for calculating salinities from microthermometric data in the system NaCl−CaCl2−H2O. In Brown PE, Hagemann SG (eds) PACROFI VI, Pan American Conference on Research on Fluid Inclusion: Madison Proceedings pp 97–98

  • Oakes CS, Bodnar RJ, Simonson JM (1990) The system NaCl-CaCl2-H20 I. The ice liquidus at 1 atm total pressure. Geochim Cosmochim Acta 54:603–610

    Article  Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. In: Valley JW, Taylor HP JR, O’Neil JR (eds) Stable isotopes in high temperature geological processes rev mineral, vol 16. BookCrafters, Chelsea, pp 419–556

    Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley-Interscience, New York, pp 509–561

    Google Scholar 

  • Palinkaš AL (1985) Lead isotopes patterns ing alenas from some selected ore deposits in Croatia and NW Bosnia. Geol Vjesnik, Zagreb 38:175–189

    Google Scholar 

  • Palinkaš AL (1988) Geochemical characteristics of Palaeozoic metallogenic regions: Samoborska Gora Mt., Gorski kotar, Lika, Kordun and Banija (in Croatian). PhD thesis, University of Zagreb, Zagreb, p 108 (unpublished)

  • Palinkaš AL (1990) Siderite-barite-polysulfide deposits and Early continental rifting in Dinarides. Geol vjesnik, Zagreb 43:181–185

    Google Scholar 

  • Palinkaš AL, Borojević S, Strmić S, Prochaska W, Spangenberg J (2003a) Siderite-hematite-barite-polysulfide mineral deposits, related to the Early intra-continental Tethyan rifting, Inner Dinarides. In: Eliopoulos DG. et al. (eds) Mineral Explorations and Sunstainable Development. Proceedings of the 7th Biennial SGA Meeting Athens, Greece, Millpres, Rotterdam, pp 1225–1228

  • Palinkaš AL, Borojević Šoštarić S, Strmić Palinkaš S, Balogh K, Prochaska W, Šiftar D (2003b) Ljubija siderite ore field, NW Bosnia, a praecursor of the Early intra-continental rifting of the Tethys. In: Neubauer F, Handler R (eds) Geodynamics and ore deposit evolution of the Alpine-Balkan-Carpathian-Dinaride province. Procceedings of the final GEODE-ABCD 2003 Workshop, Seggauberg, Austria, University of Salzburg, p 65

  • Palinkaš L, Borojević Šoštarić S, Strmić Palinkaš S (2008) Metallogeny of the North-Western and Central Dinarides and Southern Tisia. Ore Geol rev 34:501–520

    Article  Google Scholar 

  • Pamić J (1993) Eoalpine to Neoalpine magmatic and metamorphic processes in the northwestern Vardar Zone, the easternmost Periadriatic Zone and the southwestern Pannonian Basin. Tectonophysics 226:503–518

    Article  Google Scholar 

  • Pamić J, Jurković I (2002) Palaeozoic tectonostratigraphic units of the northwest and central Dinarides and adjoining South Tisia. Intern J Earth Sci 91:538–554

    Article  Google Scholar 

  • Pamić J, Gušić I, Jelaska V (1998) Geodynamic evolution of the Central Dinarides. Tectonophysics 297:251–268

    Article  Google Scholar 

  • Podubsky V (1968) Lithostratigraphy of the Sana Palaeozoic unit, NW Bosnia (in Bosnian). Geol glasnik, Sarajevo 12:165–201

    Google Scholar 

  • Podubsky V, Pamić J (1967) Volcanic rocks within Sana Palaeozoic and their stratigraphic position (in Bosnian). Acta Geol, Zagreb 6:86–203

    Google Scholar 

  • Pohl W (1986) Comparative metallogeny of siderite deposits. Öst Akad Wiss, Schriftenreihe der Erdwiss Komm, Wien 8:271–282

    Google Scholar 

  • Prochaska W (1997) Formation of different siderite provinces during the alpine tectono-metamorphic event in the Eastern Alps of Austria. In: Papunen H (ed) Mineral deposits: research and exploration—where do they meet? Proc. of the 4th Biennial SGA Meeting, Turku, Finland, Balkema, Rotterdam, pp 845–848

  • Prochaska W, Hafellner M (1994) Pretertiary Siderite Mineralization In The Eastern Alps. In: Grecula P, Nemeth Z (eds) Variscan Metallogeny in the Alpine Orogenic Belt Proc of the Intern conference, Stará Lesná, Slovakia, Stara Lesna p 17

  • Prochaska W, Frank W, Bechtel A (1996) Pretertiary siderite mineralization of the Greywacke Zone of the Eastern Alps. In: Grecula P, Németh Z (eds) Variscan metallogeny in the alpine orogenic belt, Mineralia Slovaca—Monograph. Geocomplex, Bratislava, pp 165–174

    Google Scholar 

  • Radvanec M, Grecula P, Žák K (2004) Siderite mineralization of the Gemericum superunit (Western Carpathians, Slovakia): review and a revised genetic model. Ore Geol Rev 24:267–298

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Mineral. Soc Amer Rev Mineral 12, Washington, p 644

  • Schmid SM, Berza T, Diaconescu N, Fügenschuh B, Schönborn O, Kissling E (1998) Orogen-parallel extension in the Southern Carpathians. Tectonophysics 15:1036–1064

    Google Scholar 

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:125–138

    Article  Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow, p 239

    Google Scholar 

  • Šiftar D (1984) On the chemism of barite from Petrova Gora Mt. and its comparison with the chemism of barite from other deposits in Croatia. Geol vjesnik, Zagreb 37:197–204

    Google Scholar 

  • Šinkovec B (1979) Istraživanja nuklearnih sirovina u SRH, opće studije. Prikaz pojava i ležišta mineralnih sirovina Petrove gore, Trgovske gore i Like. (On Croatian) Izvješće br. 268/79, OOUR Instit geol miner sir, Arhiv RGN-a, Zagreb, p 33

  • Skaberne D (2002) Faciesi, razvoj in interpretacija sedi-mentacijskega okolja uranonosnega Brebovniškega člena Grödenske formacije na območju Žirovskega vrha (Sedimen-tary facies, evolution and interpretation of the Brebivniški Member in the Gröden Formation on the Žirovski vrh area). Geologija, Ljubljana 45:163–188

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Strmić Palinkaš S (2004) Organic and inorganic geochemistry of Ljubija mineral deposits, NW Bosnia. MsC Thesis, University of Zagreb, p 120 (unpublished)

  • Tomljenović B (2002) Structural characteristics of the Mt. Medvednica and the Samoborsko gorje Mt. (in Croatian). PhD thesis, University of Zagreb, p 208, (unpublished)

  • Urban M, Thomas R, Hurai V, Koneèný K, Chovan M (2006) Superdense CO2 inclusions in Cretaceous quartz-stibnite veins hosted in low-grade Variscan basement of the Western Carpathians, Slovakia. Mineral Deposita 40:867–873

    Article  Google Scholar 

  • Ustaszewski K, Schmida SM, Lugović B, Schusterc R, Schalteggerd U, Bernoullia D, Hottingera L, Kounova A, Fügenschuhe B, Schefera S (2008) Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): Implications for the collision of the Adriatic and European plates. Lithos http://dx.doi.org/10.1016/j.lithos.2008.09.010

  • von Raumer JF, Neubauer F (1993) Late Precambrian and palaeozoic evolution of the alpine basement—an overview. In: von Raumer JF, Neubauer F (eds) The pre-Mesozoic geology in the Alps. Springer, Berlin, pp 625–639

    Google Scholar 

  • Vujnović L, Karamata S, Olujic J, Filipovic I (2002) The Paleozoic units of Dinarides and the Vardar zone. Proceedings of XVII. Congress of Carpathian-Balkan Geological Association, Bratislava, Geol Carpathica Spec Publ 53: p 6

  • Williams-Jones A, Samson IM (1990) Theoretical estimation of halite solubility in the system NaCl-CaCl2-H2O: Application to fluid inclusions. Can Mineral 28:299–304

    Google Scholar 

  • Willingshofer E (2000) Extension in collisional orogenic belts: The Late Cretaceous evolution of the Alps and Carpathians. PhD thesis, Vrije University, p 146

  • Žák K, Radvanec M, Grecula P (2005) Siderite mineralization of the Gemericum Superunit (Western Carpathians, Slovakia): review and a revised genetic model [Ore Geology Reviews 24, 267–298]—a reply. Ore Geol Rev 26:173–180

    Article  Google Scholar 

  • Zhang YG, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl−KCl−CaCl2−H2O using synthetic fluid inclusions. Chemical Geol 64:335–350

    Article  Google Scholar 

Download references

Acknowledgements

V. Hurai and F. Molnar are greatly appreciated for reviewing the former version of the manuscript. We acknowledge associated editor Paul G. Spry for critical review. This paper is a result of a large-scale study and research activity under the projects 119-0982709-1175, 119-0000000-158 and 098-0982934-2742 of the Ministry of Science, Republic of Croatia, and the SCOPES Project No. 7KRPJ065483.01, to whom we express our sincere gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibila Borojević Šoštarić.

Additional information

Editorial handling: P.G. Spry

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borojević Šoštarić, S., Palinkaš, L.A., Strmić Palinkaš, S. et al. Origin of siderite mineralisation in Petrova and Trgovska Gora Mts., NW Dinarides. Miner Petrol 97, 111–128 (2009). https://doi.org/10.1007/s00710-009-0065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-009-0065-2

Keywords

Navigation