Skip to main content
Log in

Petrogenesis of the Eppawala carbonatites, Sri Lanka: A cathodoluminescence and electron microprobe study

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Field and petrographic investigations, cathodoluminescence (CL) studies as well as microprobe analyses of major rock-forming minerals were conducted to establish the crystallization processes in the Eppawala carbonatites, Sri Lanka. The well preserved magmatic textures and crystal morphologies combined with the chemistry of apatite, calcite and dolomite indicate two major stages of crystal growth, which were accompanied by dynamic crystallization conditions. Initially, nucleation of apatite, ilmenite and possibly olivine was associated with rapid crystal growth during slow cooling of the carbonatite melt at depth. The heat loss through the roof and crystallization processes induced the development of turbulent convective currents, which in turn prevented further nucleation and growth of crystals and led to the dispersion of these earlier formed crystals within the magma chamber. Then, rapid upward movement of magma along structural weaknesses led to (i) the transport of mineral clusters, (ii) deformation of ilmenite, (iii) fracturing of apatite and (iv) the emplacement of the carbonatite melt as dykes. Here, the conditions were favourable for the simultaneous crystallization of magnetite, calcite and dolomite in a non-turbulent environment. Subsequent subsolidus alteration caused the hydrothermal overprint of the documented mineral assemblages, particularly along grain boundaries. The study demonstrates that detailed textural examinations of carbonatites combined with mineral chemical analyses and CL investigations can reveal the crystallization processes within carbonatite melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ariskin AA, Yaroshevsky AA (2006) Crystallization differentiation of intrusive magmatic melt: development of a convection–accumulation model. Geochem Int 44:72–93

    Article  Google Scholar 

  • Barker DS (2001) Calculated silica activities in carbonatite liquids. Contrib Mineral Petrol 141:704–709

    Article  Google Scholar 

  • Brandeis G, Marsh BD (1989) The convective liquidus in a solidifying magma chamber: a fluid dynamic investigation. Nature 339:613–616

    Article  Google Scholar 

  • Brooker RA (1998) The effect of CO2 saturation on immiscibility between silicate and carbonate liquids: an experimental study. J Petrol 39:1905–1915

    Google Scholar 

  • Bühn B, Wall F, Le Bas MJ (2001) Rare-earth element systematics of carbonatitic fluorapatites, and their significance for carbonatite magma evolution. Contrib Mineral Petrol 141:572–591

    Article  Google Scholar 

  • Chakhmouradian AR, Mumin AH, Demény A, Elliott B (2008) Postorogenic carbonatites at Eden Lake, Trans-Hudson Orogen (northern Manitoba, Canada): geological setting, mineralogy and geochemistry. Lithos 103:503–526

    Article  Google Scholar 

  • Chakrabarty A, Sen AK, Ghosh TK (2009) Amphibole – a key indicator mineral for petrogenesis of the Purulia carbonatite, West Bengal, India. Mineral Petrol 95:105–112

    Article  Google Scholar 

  • Cooper AF, Reid DL (1991) Textural evidence for calcite carbonatite magmas, Dicker Willem, southwest Namibia. Geol 19:1193–1196

    Article  Google Scholar 

  • Cooray PG (1994) The Precambrian of Sri Lanka: a historical review. Precam Res 66:3–18

    Article  Google Scholar 

  • Costanzo A, Moore KR, Wall F, Feely M (2006) Fluid inclusions in apatite from Jacupiranga calcite carbonatites: evidence for a fluid-stratified carbonatite magma chamber. Lithos 91:208–228

    Article  Google Scholar 

  • Dalton JA, Wood BJ (1993) The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet Sci Lett 119:511–525

    Article  Google Scholar 

  • Dawson JB, Hinton RW (2003) Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Mineral Mag 67:921–930

    Article  Google Scholar 

  • Dinalankara DMSK (1995) Eppawala phosphate deposit of Sri Lanka - present status. In: Dahanayake K, Van Kauwenbergh SJ, Hellums DT (eds) Direct application of phosphate rock and appropriate technology fertilizers in Asia – what hinders acceptance and growth. Institute of Fundamental Studies, Sri Lanka, pp 153–163

    Google Scholar 

  • Dobson DP, Jones AP, Rabe R, Sekine T, Kurita K, Taniguchi T, Kondo T, Kato T, Shimomura O, Urakawa S (1996) In-situ measurements of viscosity and density of carbonate melts at high pressure. Earth Planet Sci Lett 143:207–215

    Article  Google Scholar 

  • Doroshkevich AG, Wall F, Ripp GS (2007) Calcite-bearing dolomite carbonatite dykes from Veseloe, north Transbaikalia, Russia and possible Cr-rich mantle xenoliths. Mineral Petrol 90:19–49

    Article  Google Scholar 

  • Doroshkevich AG, Ripp G, Viladkar S (2009) Newania carbonatites, western India: example of mantle derived magnesium carbonatites. Mineral Petrol 47:1105–1116

    Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435

    Article  Google Scholar 

  • Dunworth EA, Bell K (2001) The Turiy massif, Kola Peninsula, Russia: isotopic and geochemical evidence for multi-source evolution. J Petrol 42:377–405

    Article  Google Scholar 

  • Genge MJ, Jones AP, Price GD (1995) An infrared and Raman study of carbonate glass: implications for the structure of carbonatite magmas. Geochim Cosmochim Acta 59:927–937

    Article  Google Scholar 

  • Gwalani LG, Rogers KA, Demény A, Groves DI, Ramsay R, Beard A, Downes PJ, Eves A (2010) The Yungul carbonatite dykes associated with the epithermal fluorite deposit at Speewah, Kimberley, Australia: Carbon and oxygen isotope constraints on their origin. Mineral Petrol 98:123–141

    Article  Google Scholar 

  • Harmer RE, Gittins J (1998) The case for primary, mantle-derived carbonatite magma. J Petrol 39:1895–1903

    Article  Google Scholar 

  • Hayward CL, Jones AP (1991) Cathodoluminescence petrography of Middle Proterozoic extrusive carbonatite from Qasiarsuk, South Greenland. Mineral Mag 55:591–603

    Article  Google Scholar 

  • Hersum TG, Marsh BD (2007) Igneous textures: on the kinetics behind the words. Mineral Soc Am 3:247–252

    Google Scholar 

  • Hort M, Marsh BD, Resmini RG, Smith MK (1999) Convection and crystallization in a liquid cooled from above: an experimental and theoretical study. J Petrol 40:1271–1300

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624

    Google Scholar 

  • Ionov D, Harmer RE (2002) Trace element distribution in calcite-dolomite carbonatites from Spitskop: inferences for differentiation of carbonatite magmas and the origin of carbonates in mantle xenoliths. Earth Planet Sci Lett 198:495–510

    Article  Google Scholar 

  • Jaupart C, Tait S (1995) Dynamics of differentiation in magma reservoirs. J Geophys Res 100(B9):17615–17636

    Article  Google Scholar 

  • Jayawardena DES (1976) The Eppawala carbonatite complex in north-west Sri Lanka (Ceylon). Geol Surv Dept Sri Lanka Econ Bull 3:1–41

    Google Scholar 

  • Jellinek AM, Kerr RC (1999) Mixing and compositional stratification produced by natural convection: 2. Applications to the differentiation of basaltic and silicic magma chambers, and komatiite lava flows. J Geophys Res 104(B4):7203–7218

    Article  Google Scholar 

  • Jellinek AM, Kerr RC, Griffiths RW (1999) Mixing and compositional stratification produced by natural convection: 1. The experiments and their application to Earth’s core and mantle. J Geophys Res 104(B4):7183–7201

    Article  Google Scholar 

  • Katz K, Keller J (1981) Comb-layering in carbonatite dykes. Nature 294:350–352

    Article  Google Scholar 

  • Kjarsgaard BA, Hamilton DL (1989) The genesis of carbonatites by immiscibility. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 388–404

    Google Scholar 

  • Langmuir CH (1989) Geochemical consequences of in situ crystallization. Nature 340:199–205

    Article  Google Scholar 

  • Le Bas MJ (1989) Diversification of carbonatite. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 428–447

    Google Scholar 

  • Le Bas MJ, Ba-bttat MAO, Taylor RN, Milton JA, Windley BF, Evins PM (2004) The carbonatite-marble dykes of Abyan Province, Yemen Republic: the mixing of mantle and crustal carbonate materials revealed by isotope and trace element analysis. Mineral Petrol 82:105–135

    Article  Google Scholar 

  • Lee WJ, Wyllie PJ (1994) Experimental data bearing on liquid immiscibility, crystal fractionation, and the origin of calciocarbonatites and natrocarbonatites. Int Geol Rev 36:797–819

    Article  Google Scholar 

  • Lee WJ, Fanelli MF, Cava N, Wyllie PJ (2000) Calciocarbonatite and magnesiocarbonatite rocks and magmas represented in the system CaO-MgO-CO2-H2O at 0.2 GPa. Mineral Petrol 68:225–256

    Article  Google Scholar 

  • Manthilake MAGM, Sawada Y, Sakai S (2008) Genesis and evolution of Eppawala carbonatites, Sri Lanka. J Asia Earth Sci 32:66–75

    Article  Google Scholar 

  • Nathan HD, Vankirk CK (1978) A model of magmatic crystallization. J Petrol 19:66–94

    Google Scholar 

  • Pierson BJ (1981) The control of cathodoluminence in dolomite by iron and manganese. Sedimentol 28:601–610

    Article  Google Scholar 

  • Pitawala A, Schidlowski M, Dahanayake K, Hofmeister W (2003) Geochemical and petrological characteristics of Eppawala phosphate deposits, Sri Lanka. Mineral Deposita 38:505–515

    Article  Google Scholar 

  • Prins P (1972) Composition of magnetite from carbonatites. Lithos 5:227–240

    Article  Google Scholar 

  • Ramasamy R, Gwalani LG, Subramanian SP (2001) A note on the occurrence and formation of magnetite in the carbonatites of Sevvattur, North Arcot district, Tamil Nadu, Southern India. J Asian Earth Sci 19(3):297–304

    Article  Google Scholar 

  • Ramasamy R, Dhote PS, Khadri SFR, Gwalani LG (2004) Carbonatite-alkalic complex of Tiruppattur, Tamil Nadu, South India - 1: Petrography and petrochemistry of the carbonatites. Ind J Geochem 19:167–187

    Google Scholar 

  • Ray JS, Shukla AD, Dewangan LK (2009) Carbon and oxygen isotopic compositions of Newania dolomite carbonatites, Rajasthan, India: implications for source of carbonatites. Mineral Petrol 98:269–282

    Article  Google Scholar 

  • Reguir EP, Chakhmouradian AR, Halden NM, Yang P, Zaitsev AN (2008) Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. Can Mineral 46:879–900

    Article  Google Scholar 

  • Scaillet B, Pichavant M, Roux J (1995) Experimental crystallization of leucogranite magmas. J Petrol 36:663–705

    Google Scholar 

  • Seifert W, Kämpf H, Wasternack J (2000) Compositional variation in apatite, phlogopite and other accessory minerals of the ultramafic Delitzsch complex, Germany: implication for cooling history of carbonatites. Lithos 53:81–100

    Article  Google Scholar 

  • Srivastava RK, Heamanb LM, Sinha AK, Shihuac S (2005) Emplacement age and isotope geochemistry of Sung Valley alkaline–carbonatite complex, Shillong Plateau, northeastern India: implications for primary carbonate melt and genesis of the associated silicate rocks. Lithos 81:33–54

    Article  Google Scholar 

  • Sweeney RJ (1994) Carbonatite melt compositions in the Earth’s mantle. Earth Planet Sci Lett 128:259–270

    Article  Google Scholar 

  • Thibault Y, Edgar AD, Lloyd FE (1992) Experimental investigation of melts from a carbonated phlogopite lherzolite: implications for metasomatism in the continental lithospheric mantle. Am Mineral 77:784–794

    Google Scholar 

  • Treiman AH (1989) Carbonatite magma: properties and processes In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 89–104

    Google Scholar 

  • Treiman AH, Schedl A (1983) Properties of carbonatite magma and processes in carbonatite magma chambers. J Geol 91:437–447

    Article  Google Scholar 

  • Viladkar SG, Subramanian V (1995) Mineralogy and geochemistry of the carbonatites of the Sevathur and Samalpatti complex, Tamil Nadu. J Geol Soc India 45:505–517

    Google Scholar 

  • Viladkar SG, Wimmenauer W (1992) Geochemical and petrological studies on the Amba Dongar carbonatites (Gujarat, India). Chem Erde 52:277–291

    Google Scholar 

  • Wagner C, Mokhtari A, Deloule E, Chabaux F (2003) Carbonatite and alkaline magmatism in Taourirt (Morocco): petrological, geochemical and Sr–Nd isotope characteristics. J Petrol 44:937–965

    Article  Google Scholar 

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite composition. Nature 335:343–346

    Article  Google Scholar 

  • Weerakoon MWK, Miyazaki T, Shuto K, Kagami H (2001) Rb-Sr and Sm-Nd geochronology of the Eppawala metamorphic rocks and carbonatite, Wanni Complex, Sri Lanka. Gondwana Res 4:409–420

    Article  Google Scholar 

  • Wolff JA (1994) Physical properties of carbonatite magmas inferred from molten salt data and application to extraction patterns from carbonatite-silicate magma chambers. Geol Mag 131:145–153

    Article  Google Scholar 

  • Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical compositions, and element distributions. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 1–13

    Google Scholar 

  • Wyllie PJ (1989) Origin of carbonatites - evidence from phase equilibrium studies. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 500–545

    Google Scholar 

  • Wyllie PJ, Biggar GM (1966) Fractional crystallization in the “carbonatite systems” CaO-MgO-CO2-H2O and CaO-CaF2-P2O5-CO2-H2O. Papers and Proceedings of the 4th General Meeting, International Mineralogical Association, I.M.A. Volume Miner Soc India, pp. 92–105

  • Zaitsev A, Polezhaeva L (1994) Dolomite-calcite textures in early carbonatites of the Kovdor ore deposit, Kola Peninsula, Russia: their genesis and application for calcite-dolomite geothermometry. Contrib Mineral Petrol 115:339–344

    Article  Google Scholar 

Download references

Acknowledgments

The first author thanks Professors M. Schidlowski and W. Hofmeister (University of Mainz, Germany) for their guidance. Dr. T. Wenzel and Dr. J. Götze (University of Freiberg, Germany) helped with the CL investigations. Financial support by the Deutscher Akademischer Austausch Dienst (Germany) and Endeavour Programme (Australia) is gratefully acknowledged. Rigorous evaluations by the referees helped to clarify aspects of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarasooriya Pitawala.

Additional information

Editorial handling: L. G. Gwalani

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitawala, A., Lottermoser, B.G. Petrogenesis of the Eppawala carbonatites, Sri Lanka: A cathodoluminescence and electron microprobe study. Miner Petrol 105, 57–70 (2012). https://doi.org/10.1007/s00710-012-0193-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-012-0193-y

Keywords

Navigation