Skip to main content
Log in

High-Bandwidth Q-Band EPR Resonators

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The emerging technology of ultra-wide-band spectrometers in electron paramagnetic resonance—enabled by recent technological advances—provides the means for new experimental schemes, a broader range of samples, and huge gains in measurement time. Broadband detection does, however, require that the resonator provides sufficient bandwidth and, despite resonator compensation schemes, excitation bandwidth is ultimately limited by resonator bandwidth. Here, we present the design of three resonators for Q-band frequencies (33–36 GHz) with a larger bandwidth than what was reported so far. The new resonators are of a loop-gap type with 4–6 loops and were designed for 1.6 mm sample tubes to achieve higher field homogeneity than in existing resonators for 3 mm samples, a feature that is beneficial for precise spin control. The loop-gap design provides good separation of the B 1 and E field, enabling robust modes with powder samples as well as with frozen water samples as the resonant behavior is largely independent of the dielectric properties of the samples. Experiments confirm the trends in bandwidth and field strength and the increased B 1 field homogeneity predicted by the simulations. Variation of the position of the coupling rod allows the adjustment of the quality factor Q and thus the bandwidth over a broad range. The increased bandwidth of the loop-gap resonators was exploited in double electron–electron resonance measurements of a Cu(II)-PyMTA ruler to yield significantly higher modulation depth and thus higher sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Poole Jr., Electron Spin Rresonance—A Comprehensive Treatise on Experimental Techniques (Dover Publications Inc., Mineola, New York, 1983)

    Google Scholar 

  2. W. Froncisz, J.S. Hyde, J. Magn. Reson. 47, 515–521 (1982)

    ADS  Google Scholar 

  3. W.M. Walsh, L.W. Rupp, Rev. Sci. Instrum. 57, 2278–2279 (1986)

    Article  ADS  Google Scholar 

  4. A. Raitsimring, A. Astashkin, J.H. Enemar, A. Blank, Y. Twig, Y. Song, T.J. Meade, Appl. Magn. Reson. 42, 441–452 (2012)

    Article  Google Scholar 

  5. J. Forrer, I. García-Rubio, R. Schuhmam, R. Tschaggelar, J. Harmer, J. Magn. Reson. 190, 280–291 (2008)

    Article  ADS  Google Scholar 

  6. R. Tschaggelar, B. Kasumaj, M.G. Santangelo, J. Forrer, P. Leger, H. Dube, F. Diederich, J. Harmer, R. Schuhmann, I. García-Rubio, G. Jeschke, J. Magn. Reson. 200, 81–87 (2009)

    Article  ADS  Google Scholar 

  7. Y. Polyhach, E. Bordignon, R. Tschaggelar, S. Gandra, A. Godt, G. Jeschke, Phys. Chem. Chem. Phys. 14, 10762 (2012)

    Article  Google Scholar 

  8. P.E. Spindler, P. Schöps, W. Kallies, S.J. Glaser, T.F. Prisner, J. Magn. Reson. 280, 30–45 (2017)

    Article  ADS  Google Scholar 

  9. A. Doll, G. Jeschke, J. Magn. Reson. 280, 46–62 (2017)

    Article  ADS  Google Scholar 

  10. A. Tannus, M. Garwood, J. Magn. Reson. A 120, 133–137 (1996)

    Article  ADS  Google Scholar 

  11. A. Doll, S. Pribitzer, R. Tschaggelar, G. Jeschke, J. Magn. Reson. 230, 27–39 (2013)

    Article  ADS  Google Scholar 

  12. A. Doll, G. Jeschke, J. Magn. Reson. 246, 18–26 (2014)

    Article  ADS  Google Scholar 

  13. A. Doll, M. Qi, S. Pribitzer, N. Wili, M. Yulikov, A. Godt, G. Jeschke, Phys. Chem. Chem. Phys. 17, 7334–7344 (2015)

    Article  Google Scholar 

  14. G. Jeschke, S. Pribitzer, A. Doll, J. Phys. Chem. B 119, 13570–13582 (2015)

    Article  Google Scholar 

  15. R.L. Wood, W. Froncisz, J.S. Hyde, J. Magn. Reson. 58, 243–253 (1984)

    ADS  Google Scholar 

  16. R.R. Mett, J.W. Sidabras, J.S. Hyde, Appl. Magn. Reson. 35, 285–318 (2008)

    Article  Google Scholar 

  17. G.A. Rinard, R.W. Quine, S.S. Eaton, G.R. Eaton, W. Froncisz, J. Magn. Reson. 108, 71–81 (1994)

    Article  ADS  Google Scholar 

  18. W. Froncisz, T. Oles, J.S. Hyde, Rev. Sci. Instrum. 57, 1095–1099 (1986)

    Article  ADS  Google Scholar 

  19. B. Simovič, P. Studerus, S. Gustavsson, R. Leturcq, K. Ensslin, R. Schuhmann, J. Forrer, A. Schweiger, Rev. Sci. Instrum. 77, 064702 (2006)

    Article  ADS  Google Scholar 

  20. M. Mehdizadeh, T.K. Ishii, J.S. Hyde, W. Froncisz, IEEE Trans. Microw. Theory Tech. 31, 1059–1064 (1983)

    Article  Google Scholar 

  21. W. Piasecki, W. Froncisz, W.L. Hubbell, J. Magn. Reson. 134, 36–43 (1998)

    Article  ADS  Google Scholar 

  22. R.R. Mett, J.W. Sidabras, J.S. Hyde, Appl. Magn. Reson. 31, 573–589 (2007)

    Article  Google Scholar 

  23. J.W. Sidabras, R.R. Mett, W. Froncisz, T.G. Camenisch, J.R. Anderson, J.S. Hyde, Rev. Sci. Instrum. 78, 034701 (2007)

    Article  ADS  Google Scholar 

  24. M. Qi, M. Hülsmann, A. Godt, J. Org. Chem. 81, 2549–2571 (2016)

    Article  Google Scholar 

  25. A. Dalaloyan, M. Qi, S. Ruthstein, S. Vega, A. Godt, A. Feintuch, D. Goldfarb, Phys. Chem. Chem. Phys. 17, 18464–18476 (2015)

    Article  Google Scholar 

  26. G. Jeschke, Annu. Rev. Phys. Chem. 63, 419–446 (2012)

    Article  ADS  Google Scholar 

  27. M. Pannier, S. Veit, A. Godt, G. Jeschke, H.W. Spiess, J. Magn. Reson. 142, 331–340 (2000)

    Article  ADS  Google Scholar 

  28. M. Ji, S. Ruthstein, S. Saxena, Acc. Chem. Res. 47, 688–695 (2014)

    Article  Google Scholar 

  29. M. Garwood, L. DelaBarre, J. Magn. Reson. 153, 155–177 (2001)

    Article  ADS  Google Scholar 

  30. T. Wiegand, D. Lacabanne, K. Keller, R. Cadalbert, L. Lecoq, M. Yulikov, L. Terradot, G. Jeschke, B.H. Meier, A. Böckmann, Angew. Chem. Int. Ed. 56, 3369–3373 (2017)

    Article  Google Scholar 

  31. G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C.R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30, 473–498 (2006)

    Article  Google Scholar 

  32. A.M. Bowen, C.E. Tait, C.R. Timmel, J.R. Harmer, in Structural Information from Spin-Llabels and Intrinsic Paramagnetic Centres in the Biosciences, vol. 152, ed. by C.R. Timmel, J.R. Harmer (Springer, Berlin, Heidelberg, 2013), pp. 283–327

    Google Scholar 

Download references

Acknowledgements

We thank Andrin Doll and Stephan Pribitzer for helpful discussions and resonator tests on other applications. We are grateful to an anonymous reviewer for providing a derivation of Eq. (10) and correcting an error in constants in the original form of this equation. Funding by the Swiss National Science Foundation (grant no. 200020–169057) and by the German Science Foundation (DFG; SPP1601, GO 555/6-2) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Jeschke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5748 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tschaggelar, R., Breitgoff, F.D., Oberhänsli, O. et al. High-Bandwidth Q-Band EPR Resonators. Appl Magn Reson 48, 1273–1300 (2017). https://doi.org/10.1007/s00723-017-0956-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0956-z

Navigation