Skip to main content

Advertisement

Log in

Polyamine metabolism in Leishmania: from arginine to trypanothione

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Polyamines (PAs) are essential metabolites in eukaryotes, participating in a variety of proliferative processes, and in trypanosomatid protozoa play an additional role in the synthesis of the critical thiol trypanothione. The PAs are synthesized by a metabolic process which involves arginase (ARG), which catalyzes the enzymatic hydrolysis of l-arginine (l-Arg) to l-ornithine and urea, and ornithine decarboxylase (ODC), which catalyzes the enzymatic decarboxylation of l-ornithine in putrescine. The S-adenosylmethionine decarboxylase (AdoMetDC) catalyzes the irreversible decarboxylation of S-adenosylmethionine (AdoMet), generating the decarboxylated S-adenosylmethionine (dAdoMet), which is a substrate, together with putrescine, for spermidine synthase (SpdS). Leishmania parasites and all the other members of the trypanosomatid family depend on spermidine for growth and survival. They can synthesize PAs and polyamine precursors, and also scavenge them from the microenvironment, using specific transporters. In addition, Trypanosomatids have a unique thiol-based metabolism, in which trypanothione (N1-N8-bis(glutathionyl)spermidine, T(SH)2) and trypanothione reductase (TR) replace many of the antioxidant and metabolic functions of the glutathione/glutathione reductase (GR) and thioredoxin/thioredoxin reductase (TrxR) systems present in the host. Trypanothione synthetase (TryS) and TR are necessary for the protozoa survival. Consequently, enzymes involved in spermidine synthesis and its utilization, i.e. ARG, ODC, AdoMetDC, SpdS and, in particular, TryS and TR, are promising targets for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AdoMet:

S-Adenosylmethionine

AdoMetDC:

S-Adenosylmethionine decarboxylase

APA:

3-Aminooxy-1-aminopropane

APC:

Amino acid-polyamine-organocation

APX:

Ascorbate peroxidase

ARG:

Arginase

CAT:

Cationic amino acid transporter

dAdoMet:

Decarboxylated S-adenosylmethionine

DFMO:

α-Difluoromethylornithine

eEF1B:

Eukaryotic translation elongation factor 1B

GR:

Glutathione reductase

GspS:

Glutathionyl-spermidine synthetase

l-Arg:

l-Arginine

MCF:

Mitochondrial carrier family

NO:

Nitric oxide

NOS:

Nitric oxide synthase

nsGPX:

Non selenium glutathione peroxidase-like enzyme

ODC:

Ornithine decarboxylase

PA:

Polyamine

PAO:

Polyamine oxidase

PLP:

Pyridoxal 5′-phosphate

PV:

Parasitophorous vacuole

ROS:

Reactive oxygen species

RNOS:

Reactive nitric oxide species

RR:

Ribonucleotide reductase

Spd:

Spermidine

SpdS:

Spermidine synthase

Spm:

Spermine

TDPX:

Tryparedoxin peroxidase

TR:

Trypanothione reductase

TrxR:

Thioredoxin reductase

TryS:

Trypanothione synthetase

T(SH)2 :

Trypanothione, or N1, N8-bis(glutathionyl)spermidine

TXN:

Tryparedoxin

References

  • Adak S, Datta AK (2005) Leishmania major encodes an unusual peroxidase that is a close homologue of plant ascorbate peroxidase: a novel role of the transmembrane domain. Biochem J 390:465–474

    Article  CAS  PubMed  Google Scholar 

  • Agostinelli E, Tempera G, Molinari A, Salvi M, Battaglia V, Toninello A, Arancia G (2007) The physiological role of biogenic amines redox reactions in mitochondria. New perspectives in cancer therapy. Amino Acids 33:175–187

    Article  CAS  PubMed  Google Scholar 

  • Agostinelli E, Condello M, Molinari A, Tempera G, Viceconte N, Arancia G (2009) Cytotoxicity of spermine oxidation products to multidrug resistant melanoma cells (M14 ADR2): sensitization by MDL 72527, a lysosomotropic compound. Int J Oncol 35:485–498

    Article  CAS  PubMed  Google Scholar 

  • Almrud JJ, Oliveira MA, Kern AD, Grishin NV, Phillips MA, Hackert ML (2000) Crystal structure of human ornithine decarboxylase at 2.1 A resolution: structural insights to antizyme binding. J Mol Biol 295:7–16

    Article  CAS  PubMed  Google Scholar 

  • Alphey MS, Leonard GA, Gourley DG, Tetaud E, Fairlamb AH, Hunter WN (1999) The high resolution crystal structure of recombinant Crithidia fasciculata tryparedoxin-I. J Biol Chem 274:25613–25622

    Article  CAS  PubMed  Google Scholar 

  • Alphey MS, Bond CS, Tetaud E, Fairlamb AH, Hunter WN (2000) The structure of reduced tryparedoxin peroxidase reveals a decamer and insight into reactivity of 2Cys-peroxiredoxins. J Mol Biol 300:903–916

    Article  CAS  PubMed  Google Scholar 

  • Alphey MS, Gabrielsen M, Micossi E, Leonard GA, McSweeney SM, Ravelli RB, Tetaud E, Fairlamb AH, Bond CS, Hunter WN (2003) Tryparedoxins from Crithidia fasciculata and Trypanosoma brucei: photoreduction of the redox disulfide using synchrotron radiation and evidence for a conformational switch implicated in function. J Biol Chem 278:25919–25925

    Article  CAS  PubMed  Google Scholar 

  • Alphey MS, König J, Fairlamb AH (2008) Structural and mechanistic insights into type II trypanosomatid tryparedoxin-dependent peroxidases. Biochem J 414:375–381

    Article  CAS  PubMed  Google Scholar 

  • Alvar J, Yactayo S, Bern C (2006) Leishmaniasis and poverty. Trends Parasitol 22:552–557

    Article  PubMed  Google Scholar 

  • Amssoms K, Oza SL, Ravaschino E, Yamani A, Lambeir A, Rajan P, Bal G, Rodriguez J, Fairlamb AH, Augustyns K, Haemers A (2002a) Glutathione-like tripeptides as inhibitors of glutathionylspermidine synthetase. Part 1: Substitution of the glycine carboxylic acid group. Bioorg Med Chem Lett 12:2553–2556

    Article  CAS  PubMed  Google Scholar 

  • Amssoms K, Oza SL, Augustyns K, Yamani A, Lambeir AM, Bal G, Van der Veken P, Fairlamb AH, Haemers A (2002b) Glutathione-like tripeptides as inhibitors of glutathionylspermidine synthetase. Part 2: substitution of the glycine part. Bioorg Med Chem Lett 12:2703–2705

    Article  CAS  PubMed  Google Scholar 

  • Ariza A, Vickers TJ, Greig N, Armour KA, Dixon MJ, Eggleston IM, Fairlamb AH, Bond CS (2006) Mol Microbiol 59:1239–1248

    Article  CAS  PubMed  Google Scholar 

  • Ash DE (2004) Structure and function of arginases. J Nutr 134(10 Suppl):2760S–2764S

    CAS  PubMed  Google Scholar 

  • Bacchi CJ, Nathan HC, Yarlett N, Goldberg B, McCann PP, Sjoerdsma A, Saric M, Clarkson AB Jr (1994) Combination chemotherapy of drug-resistant Trypanosoma brucei rhodesiense infections in mice using dl-alpha-difluoromethylornithine and standard trypanocides. Antimicrob Agents Chemother 38:563–569

    CAS  PubMed  Google Scholar 

  • Bachrach U, Brem S, Wertman SB, Schnur LF, Greenblatt CL (1979) Leishmania spp.: Effect of inhibitors on growth and on polyamine and macromolecular syntheses. Exp Parasitol 48:464–470

    Article  CAS  PubMed  Google Scholar 

  • Baiocco P, Colotti G, Franceschini S, Ilari A (2009) Molecular basis of antimony treatment in leishmaniasis. J Med Chem 52:2603–2612

    Article  CAS  PubMed  Google Scholar 

  • Barksdale AR, Bernard AC, Maley ME, Gellin GL, Kearney PA, Boulanger BR, Tsuei BJ, Ochoa JB (2004) Regulation of arginase expression by T-helper II cytokines and isoproterenol. Surgery 135:527–535

    Article  PubMed  Google Scholar 

  • Basselin M, Badet-Denisot MA, Lawrence F, Robert-Gero M (1997) Effects of pentamidine on polyamine level and biosynthesis in wild-type, pentamidine-treated, and pentamidine-resistant Leishmania. Exp Parasitol 85:274–282

    Article  CAS  PubMed  Google Scholar 

  • Basselin M, Coombs GH, Barrett MP (2000) Putrescine and spermidine transport in Leishmania. Mol Biochem Parasitol 109:37–46

    Article  CAS  PubMed  Google Scholar 

  • Basselin M, Denise H, Coombs GH, Barrett MP (2002) Resistance to pentamidine in Leishmania mexicana involves exclusion of the drug from the mitochondrion. Antimicrob Agents Chemother 46:3731–3738

    Article  CAS  PubMed  Google Scholar 

  • Beswick TC, Willert EK, Phillips MA (2006) Mechanisms of allosteric regulation of Trypanosoma cruzi S-adenosylmethionine decarboxylase. Biochemistry 45:7797–7807

    Article  CAS  PubMed  Google Scholar 

  • Bitonti AJ, Byers TL, Bush TL, Casara PJ, Bacchi CJ, Clarkson AB Jr, McCann PP, Sjoerdsma A (1990) Cure of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense infections in mice with an irreversible inhibitor of S-adenosylmethionine decarboxylase. Antimicrob Agents Chemother 34:1485–1490

    CAS  PubMed  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  CAS  PubMed  Google Scholar 

  • Boitz JM, Yates PA, Kline C, Gaur U, Wilson ME, Ullman B, Roberts SC (2009) Leishmania donovani ornithine decarboxylase is indispensable for parasite survival in the mammalian host. Infect Immun 77:756–763

    Article  CAS  PubMed  Google Scholar 

  • Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  CAS  PubMed  Google Scholar 

  • Busch W, Saier MH Jr (2003) The IUBMB-endorsed transporter classification system. Methods Mol Biol 227:21–36

    CAS  PubMed  Google Scholar 

  • Casero RA, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390

    Article  CAS  PubMed  Google Scholar 

  • Castro H, Thomas AM (2008) Peroxidases of trypanosomatidae. Antiox Redox Signal 10:1–10

    Article  CAS  Google Scholar 

  • Castro H, Sousa C, Novais M, Santos M, Buddeb H, Cordeiro-da-Silva A, Flohé L, Tomás AM (2004) Two linked genes of Leishmania infantum encode tryparedoxins localized to cytosol and mitochondrion. Mol Biochem Parasitol 136:137–147

    Article  CAS  PubMed  Google Scholar 

  • Castro H, Romao S, Gadelha FR, Tomás AM (2008) Leishmania infantum: provision of reducing equivalents to the mitochondrial tryparedoxin/tryparedoxin peroxidase system. Exp Parasitol 12:421–423

    Article  CAS  Google Scholar 

  • Christianson DW (2005) Arginase: structure, mechanism, and physiological role in male and female sexual arousal. Acc Chem Res 38:191–201

    Article  CAS  PubMed  Google Scholar 

  • Closs EI, Gräf P, Habermeier A, Cunningham JM, Förstermann U (1997) Human cationic amino acid transporters hCAT-1, hCAT-2A, and hCAT-2B: three related carriers with distinct transport properties. Biochemistry 36:6462–6468

    Article  CAS  PubMed  Google Scholar 

  • Closs EI, Simon A, Vékony N, Rotmann A (2004) Plasma membrane transporters for arginine. J Nutr 134(10 Suppl):2752S–2759S

    CAS  PubMed  Google Scholar 

  • Closs EI, Boissel JP, Habermeier A, Rotmann A (2006) Structure and function of cationic amino acid transporters (CATs). J Membr Biol 213:67–77

    Article  CAS  PubMed  Google Scholar 

  • Colasante C, Pena Diaz P, Clayton C, Voncken F (2009) Mitochondrial carrier family inventory of Trypanosoma brucei brucei: identification, expression and subcellular localization. Mol Biochem Parasitol 167:104–117

    Article  CAS  PubMed  Google Scholar 

  • Comini MA, Krauth-Siegel RL, Flohé L (2007) Depletion of the thioredoxin homologue tryparedoxin impairs antioxidative defence in African trypanosomes. Biochem J 402:43–49

    Article  CAS  PubMed  Google Scholar 

  • Comini MA, Rettig J, Dirdjaja N, Hanschmann EM, Berndt C, Krauth-Siegel RL (2008) Monothiol glutaredoxin-1 is an essential iron-sulfur protein in the mitochondrion of African trypanosomes. J Biol Chem 283:27785–27798

    Article  CAS  PubMed  Google Scholar 

  • Cunningham ML, Fairlamb AH (1995) Trypanothione reductase from Leishmania donovani. Purification, characterisation and inhibition by trivalent antimonials. Eur J Biochem 230:460–468

    Article  CAS  PubMed  Google Scholar 

  • da Silva ER, da Silva MF, Fischer H, Mortara RA, Mayer MG, Framesqui K, Silber AM, Floeter-Winter LM (2008) Biochemical and biophysical properties of a highly active recombinant arginase from Leishmania amazonensis and subcellular localization of native enzyme. Mol Biochem Parasitol 159:104–111

    Article  CAS  PubMed  Google Scholar 

  • Darlyuk I, Goldman A, Roberts SC, Ullman B, Rentsch D, Zilberstein D (2009) Arginine homeostasis and transport in the human pathogen Leishmania donovani. J Biol Chem 284:19800–19807

    Article  CAS  PubMed  Google Scholar 

  • De Craecker S, Verbruggen C, Rajan PK, Smith K, Haemers A, Fairlamb AH (1997) Characterization of the peptide substrate specificity of glutathionylspermidine synthetase from Crithidia fasciculata. Mol Biochem Parasitol 84:25–32

    Article  PubMed  Google Scholar 

  • DeLano WL (2008) The PyMOL molecular graphics system. DeLano Scientific LLC, Palo Alto

    Google Scholar 

  • Devés R, Boyd CA (1998) Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev 78:487–545

    PubMed  Google Scholar 

  • Devés R, Chavez P, Boyd CA (1992) Identification of a new transport system (y + L) in human erythrocytes that recognizes lysine and leucine with high affinity. J Physiol 454:491–501

    PubMed  Google Scholar 

  • Dormeyer M, Reckenfelderbaumer N, Lüdemann H, Krauth-Siegel RL (2001) Trypanothione-dependent synthesis of deoxyribonucleotides by Trypanosoma brucei ribonucleotide reductase. J Biol Chem 276:10602–10606

    Article  CAS  PubMed  Google Scholar 

  • Dridi L, Ouameur AA, Ouellette M (2010) The high affinity S-Adenosylmethionine plasma membrane transporter of Leishmania is a member of the folate biopternin transporter (FBT) family. J Biol Chem Apr 20. [Epub ahead of print]

  • Dufe VT, Ingner D, Heby O, Khomutov AR, Persson L, Al-Karadaghi S (2007) A structural insight into the inhibition of human and Leishmania donovani ornithine decarboxylases by 1-amino-oxy-3-aminopropane. Biochem J 405:261–268

    Article  CAS  PubMed  Google Scholar 

  • Dufernez F, Yernaux C, Gerbod D, Noël C, Chauvenet M, Wintjens R, Edgcomb VP, Capron M, Opperdoes FR, Viscogliosi E (2006) The presence of four iron-containing superoxide dismutase isozymes in trypanosomatidae: characterization, subcellular localization, and phylogenetic origin in Trypanosoma brucei. Free Radic Biol Med 40:210–225

    Article  CAS  PubMed  Google Scholar 

  • Ekstrom JL, Mathews II, Stanley BA, Pegg AE, Ealick SE (1999) The crystal structure of human S-adenosylmethionine decarboxylase at 2.25 Å resolution reveals a novel fold. Structure 7:583–595

    Article  CAS  PubMed  Google Scholar 

  • Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 227:1485–1487

    Article  CAS  PubMed  Google Scholar 

  • Fyfe PK, Oza SL, Fairlamb AH, Hunter WN (2008) Leishmania trypanothione synthetase-amidase structure reveals a basis for regulation of conflicting synthetic and hydrolytic activities. J Biol Chem 283:17672–17680

    Article  CAS  PubMed  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  • Green SJ, Crawford RM, Hockmeyer JT, Meltzer MS, Nacy CA (1990) Leishmania major amastigotes initiate the l-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha. J Immunol 145:4290–4297

    CAS  PubMed  Google Scholar 

  • Greig N, Wyllie S, Vickers TJ, Fairlamb AH (2006) Trypanothione-dependent glyoxalase I in Trypanosoma cruzi. Biochem J 400:217–223

    Article  CAS  PubMed  Google Scholar 

  • Greig N, Wyllie S, Patterson S, Fairlamb AH (2009) A comparative study of methylglyoxal metabolism in trypanosomatids. FEBS J 276:376–386

    Article  CAS  PubMed  Google Scholar 

  • Grishin NV, Osterman AL, Brooks HB, Phillips MA, Goldsmith EJ (1999) X-ray structure of ornithine decarboxylase from Trypanosoma brucei: the native structure and the structure in complex with alpha-difluoromethylornithine. Biochem 38:15174–15184

    Article  CAS  Google Scholar 

  • Haimeur A, Brochu C, Genest P, Papadopoulou B, Ouellette M (2000) Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Mol Biochem Parasitol 108:131–135

    Article  CAS  PubMed  Google Scholar 

  • Hanson S, Adelman J, Ullman B (1992) Amplification and molecular cloning of the ornithine decarboxylase gene of Leishmania donovani. J Biol Chem 267:2350–2359

    CAS  PubMed  Google Scholar 

  • Hasne MP, Ullman B (2005) Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major. J Biol Chem 280:15188–15194

    Article  CAS  PubMed  Google Scholar 

  • Holmgren A (1995) Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure 3:239–243

    Article  CAS  PubMed  Google Scholar 

  • Huynh NN, Harris EE, Chin-Dusting JF, Andrews KL (2009) The vascular effects of different arginase inhibitors in rat isolated aorta and mesenteric arteries. Br J Pharmacol 156:84–93

    Article  CAS  PubMed  Google Scholar 

  • Iniesta V, Gómez-Nieto LC, Corraliza I (2001) The inhibition of arginase by N(omega)-hydroxy-l-arginine controls the growth of Leishmania inside macrophages. J Exp Med 193:777–784

    Article  CAS  PubMed  Google Scholar 

  • Iniesta V, Gómez-Nieto LC, Molano I, Mohedano A, Carcelén J, Mirón C, Alonso C, Corraliza I (2002) Arginase I induction in macrophages, triggered by Th2-type cytokines, supports the growth of intracellular Leishmania parasites. Parasite Immunol 24:113–118

    Article  CAS  PubMed  Google Scholar 

  • Iniesta V, Carcelén J, Molano I, Peixoto PM, Redondo E, Parra P, Mangas M, Monroy I, Campo ML, Nieto CG, Corraliza I (2005) Arginase I induction during Leishmania major infection mediates the development of disease. Infect Immun 73:6085–6090

    Article  CAS  PubMed  Google Scholar 

  • Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M et al (2005) The genome of the kinetoplastid parasite Leishmania major. Science 309:436–442

    Article  PubMed  Google Scholar 

  • Jiang Y, Roberts SC, Jardim A, Carter NS, Shih S, Ariyanayagam M, Fairlamb AH, Ullman B (1999) Ornithine decarboxylase gene deletion mutants of Leishmania donovani. J Biol Chem 274:3781–3788

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Gonon AT, Sjöquist PO, Lundberg JO, Pernow J (2010) Arginase inhibition mediates cardioprotection during ischaemia-reperfusion. Cardiovasc Res 85:147–154

    Article  CAS  PubMed  Google Scholar 

  • Kahana C (2007) Ubiquitin dependent and independent protein degradation in the regulation of cellular polyamines. Amino Acids 33:225–230

    Article  CAS  PubMed  Google Scholar 

  • Kanyo ZF, Scolnick LR, Ash DE, Christianson DW (1996) Structure of a unique binuclear manganese cluster in arginase. Nature 383:554–557

    Article  CAS  PubMed  Google Scholar 

  • Kaur K, Emmett K, McCann PP, Sjoerdsma A, Ullman B (1986) Effects of dl-alpha-difluoromethylornithine on Leishmania donovani promastigotes. J Protozool 33:518–521

    CAS  PubMed  Google Scholar 

  • Kedzierski L, Sakthianandeswaren A, Curtis JM, Andrews PC, Junk PC, Kedzierska K (2009) Leishmaniasis: current treatment and prospects for new drugs and vaccines. Curr Med Chem 16:599–614

    Article  CAS  PubMed  Google Scholar 

  • Kern AD, Oliveira MA, Coffino P, Hackert ML (1999) Structure of mammalian ornithine decarboxylase at 1.6 Å resolution: stereochemical implications of PLP-dependent amino acid decarboxylases. Structure 7:567–581

    Article  CAS  PubMed  Google Scholar 

  • Khan AU, Mei YH, Wilson T (1992) A proposed function for spermine and spermidine: protection of replicating DNA against damage by singlet oxygen. Proc Natl Acad Sci USA 89:11426–11427

    Article  CAS  PubMed  Google Scholar 

  • Khomutov AR (2002) Inhibition of enzymes of polyamine biosynthesis by substrate-like O-substituted hydroxylamines. Biochem (Mosc) 67:1159–1167

    Article  CAS  Google Scholar 

  • Krassner SM, Flory B (1971) Essential amino acids in the culture of Leishmania tarentolae. J Parasitol 57:917–920

    Article  CAS  PubMed  Google Scholar 

  • Krauth-Siegel RL, Comini MA (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 1780:1236–1248

    CAS  PubMed  Google Scholar 

  • Krieger S, Schwarz W, Ariyanayagam MR, Fairlamb AH, Krauth-Siegel RL, Clayton C (2000) Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol Microbiol 35:542–552

    Article  CAS  PubMed  Google Scholar 

  • Kropf P, Fuentes JM, Fahnrich E, Arpa L, Herath S, Weber V, Soler G, Celada A, Modolell M, Müller I (2005) Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. FASEB J 19:1000–1002

    CAS  PubMed  Google Scholar 

  • Légaré D, Papadopoulou B, Roy G, Mukhopadhyay R, Haimeur A, Dey S, Grondin K, Brochu C, Rosen BP, Ouellette M (1997) Efflux systems and increased trypanothione levels in arsenite-resistant Leishmania. Exp Parasitol 87:275–282

    Article  PubMed  Google Scholar 

  • Légaré D, Cayer S, Singh AK, Richard D, Papadopoulou B, Ouellette M (2001) ABC proteins of Leishmania. J Bioenerg Biomembr 33:469–474

    Article  PubMed  Google Scholar 

  • Liew FY, Li Y, Moss D, Parkinson C, Rogers MV, Moncada S (1991) Resistance to Leishmania major infection correlates with the induction of nitric oxide synthase in murine macrophages. Eur J Immunol 21:3009–3014

    Article  CAS  PubMed  Google Scholar 

  • Liñares GE, Ravaschino EL, Rodriguez JB (2006) Progresses in the field of drug design to combat tropical protozoan parasitic diseases. Curr Med Chem 13:335–360

    Article  PubMed  Google Scholar 

  • MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  CAS  PubMed  Google Scholar 

  • Maltezou HC (2008) Visceral leishmaniasis: advances in treatment. Recent Pat Antiinfect Drug Discov 3:192–198

    Article  CAS  PubMed  Google Scholar 

  • Maltezou HC (2010) Drug resistance in visceral leishmaniasis. J Biomed Biotechnol 2010:617521. Epub 2009 Nov 1

  • Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  CAS  PubMed  Google Scholar 

  • McConville MJ, de Souza D, Saunders E, Likic VA, Naderer T (2007) Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol 23:368–375

    Article  CAS  PubMed  Google Scholar 

  • Modolell M, Corraliza IM, Link F, Soler G, Eichmann K (1995) Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by Th1 and Th2 cytokines. Eur J Immunol 25:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Mori M, Gotoh T (2004) Arginine metabolic enzymes, nitric oxide and infection. J Nutr 134(10 Suppl):2820S–2825S

    CAS  PubMed  Google Scholar 

  • Morris SM Jr (2004) Enzymes of arginine metabolism. J Nutr 134(10 Suppl):2743S–2747S

    CAS  PubMed  Google Scholar 

  • Morris SM Jr (2007) Arginine metabolism: boundaries of our knowledge. J Nutr 137(Suppl 2):1602S–1609S

    CAS  PubMed  Google Scholar 

  • Morris SM Jr (2009) Recent advances in arginine metabolism: roles and regulation of the arginases. Br J Pharmacol 157:922–930

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Kapoor P, Madhubala R (1996) Characterization of alpha-difluoromethylornithine resistant Leishmania donovani and its susceptibility to other inhibitors of the polyamine biosynthetic pathway. Pharmacol Res 34:43–46

    Article  CAS  PubMed  Google Scholar 

  • Munder M (2009) Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158:638–651

    Article  CAS  PubMed  Google Scholar 

  • Munder M, Eichmann K, Modolell M (1998) Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160:5347–5354

    CAS  PubMed  Google Scholar 

  • Munder M, Eichmann K, Morán JM, Centeno F, Soler G, Modolell M (1999) Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol 163:3771–3777

    CAS  PubMed  Google Scholar 

  • N’soukpo-Kossi CN, Ouameur AA, Thomas T, Shirahata A, Thomas TJ, Tajmir-Riahi HA (2008) DNA interaction with antitumor polyamine analogues: a comparison with biogenic polyamines. Biomacromol 9:2712–2718

    Article  CAS  Google Scholar 

  • Naderer T, McConville MJ (2008) The Leishmania-macrophage interaction: a metabolic perspective. Cell Microbiol 10:301–308

    Article  CAS  PubMed  Google Scholar 

  • Ouameur AA, Tajmir-Riahi HA (2004) Structural analysis of DNA interactions with biogenic polyamines and cobalt(III)hexamine studied by Fourier transform infrared and capillary electrophoresis. J Biol Chem 279:42041–42054

    Article  CAS  PubMed  Google Scholar 

  • Oza SL, Shaw MP, Wyllie S, Fairlamb AH (2005) Trypanothione biosynthesis in Leishmania major. Mol Biochem Parasitol 139:107–116

    Article  CAS  PubMed  Google Scholar 

  • Oza SL, Chen S, Wyllie S, Coward JK, Fairlamb AH (2008) ATP-dependent ligases in trypanothione biosynthesis–kinetics of catalysis and inhibition by phosphinic acid pseudopeptides. FEBS J 275:5408–5421

    Article  CAS  PubMed  Google Scholar 

  • Pace CN, Buonanno A, Simmons-Hansen J (1980) Steady-state kinetic studies of arginase with an improved direct spectrophotometric assay. Anal Biochem 109:261–265

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan PK, Mukherjee A, Rentala M (2005) Characterization of the gene encoding glyoxalase II from Leishmania donovani: a potential target for anti-parasite drug. Biochem J 393:227–234

    Google Scholar 

  • Patel MM, Anchoroquy TJ (2006) Ability of spermine to differentiate between DNA sequences—preferential stabilization of A-tracts. Biophys Chem 122:5–15

    Article  CAS  PubMed  Google Scholar 

  • Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA et al (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE, Xiong H, Feith D, Shantz LM (1998) S-adenosylmethionine decarboxylase: structure, function and regulation by polyamines. Biochem Soc Trans 26:580–586

    CAS  PubMed  Google Scholar 

  • Peranzoni E, Marigo I, Dolcetti L, Ugel S, Sonda N, Taschin E, Mantelli B, Bronte V, Zanovello P (2007) Role of arginine metabolism in immunity and immunopathology. Immunobiol 212:795–812

    Article  CAS  Google Scholar 

  • Persson L (2007) Ornithine decarboxylase and S-adenosylmethionine decarboxylase in trypanosomatids. Biochem Soc Trans 35(Pt 2):314–317

    CAS  PubMed  Google Scholar 

  • Piñeyro MD, Pizarro JC, Lema F, Pritsch O, Cayota A, Bentley GA, Robello C (2005) Crystal structure of the tryparedoxin peroxidase from the human parasite Trypanosoma cruzi. J Struct Biol 150:11–22

    Article  PubMed  CAS  Google Scholar 

  • Qi H, Ji J, Wanasen N, Soong L (2004) Enhanced replication of Leishmania amazonensis amastigotes in gamma interferon-stimulated murine macrophages: implications for the pathogenesis of cutaneous leishmaniasis. Infect Immun 72:988–995

    Article  CAS  PubMed  Google Scholar 

  • Reczkowski RSA (1992) EPR evidence for binuclear Mn(II) centers in rat liver arginase. J Am Chem Soc 114:10992–10994

    Article  CAS  Google Scholar 

  • Reguera RM, Fouce RB, Cubría JC, Bujidos ML, Ordóñez D (1995) Fluorinated analogues of l-ornithine are powerful inhibitors of ornithine decarboxylase and cell growth of Leishmania infantum promastigotes. Life Sci 56:223–230

    Article  CAS  PubMed  Google Scholar 

  • Roberts SC, Scott J, Gasteier JE, Jiang Y, Brooks B, Jardim A, Carter NS, Heby O, Ullman B (2002) S-adenosylmethionine decarboxylase from Leishmania donovani. Molecular, genetic, and biochemical characterization of null mutants and overproducers. J Biol Chem 277:5902–5909

    Article  CAS  PubMed  Google Scholar 

  • Roberts SC, Tancer MJ, Polinsky MR, Gibson KM, Heby O, Ullman B (2004) Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania. Characterization of gene deletion mutants. J Biol Chem 279:23668–23678

    Article  CAS  PubMed  Google Scholar 

  • Roberts SC, Jiang Y, Gasteier J, Frydman B, Marton LJ, Heby O, Ullman B (2007) Leishmania donovani polyamine biosynthetic enzyme overproducers as tools to investigate the mode of action of cytotoxic polyamine analogs. Antimicrob Agents Chemother 51:438–445

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez PC, Quiceno DG, Ochoa AC (2007) l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573

    Article  CAS  PubMed  Google Scholar 

  • Romao S, Castro H, Sousa C, Carvalho S, Tomás AM (2009) The cytosolic tryparedoxin of Leishmania infantum is essential for parasite survival. Int J Parasitol 39:703–711

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Chica J, Medina MA, Sánchez-Jiménez F, Ramírez FJ (2003) Raman spectroscopy study of the interaction between biogenic polyamines and an alternating AT oligodeoxyribonucleotide. Biochim Biophys Acta 1628:11–21

    CAS  PubMed  Google Scholar 

  • Sacks D, Anderson C (2004) Re-examination of the immunosuppressive mechanisms mediating non-cure of Leishmania infection in mice. Immunol Rev 201:225–238

    Article  CAS  PubMed  Google Scholar 

  • Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    Article  CAS  PubMed  Google Scholar 

  • Scolnick LR, Kanyo ZF, Cavalli RC et al (1997) Altering the binuclear manganese cluster of arginase diminishes thermostability and catalytic function. Biochemistry 36:10558–10565

    Article  CAS  PubMed  Google Scholar 

  • Seiler N, Raul F (2005) Polyamines and apoptosis. J Cell Mol Med 9:623–642

    Article  CAS  PubMed  Google Scholar 

  • Shaked-Mishan P, Suter-Grotemeyer M, Yoel-Almagor T, Holland N, Zilberstein D, Rentsch D (2006) A novel high-affinity arginine transporter from the human parasitic protozoan Leishmania donovani. Mol Microbiol 60:30–38

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Mukherjee A, Khomutov AR, Persson L, Heby O, Chatterjee M, Madhubala R (2007) Antileishmanial effect of 3-aminooxy-1-aminopropane is due to polyamine depletion. Antimicrob Agents Chemother 51:528–534

    Article  CAS  PubMed  Google Scholar 

  • Steiger RF, Steiger E (1977) Cultivation of Leishmania donovani and Leishmania braziliensis in defined media: nutritional requirements. J Protozool 24:437–441

    CAS  PubMed  Google Scholar 

  • Tavares J, Ouaissi A, Lin PK, Tomás A, Cordeiro-da-Silva A (2005) Differential effects of polyamine derivative compounds against Leishmania infantum promastigotes and axenic amastigotes. Int J Parasitol 35:637–646

    Article  CAS  PubMed  Google Scholar 

  • Todd BA, Parsegian VA, Shirahata A, Thomas TJ, Rau DC (2008) Attractive forces between cation condensed DNA double helices. Biophys J 94:4775–4782

    Article  CAS  PubMed  Google Scholar 

  • Torrie LS, Wyllie S, Spinks D, Oza SL, Thompson S, Harrison JR, Gilbert IH, Wyatt PG, Fairlamb AH, Frearson JA (2009) Chemical validation of trypanothione synthetase: a potential drug target for human trypanosomiasis. J Biol Chem 284:36137–36145

    Article  CAS  PubMed  Google Scholar 

  • Tovar J, Cunningham ML, Smith AC, Croft SL, Fairlamb AH (1998) Downregulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant mutant homologue: effect on parasite intracellular survival. Proc Natl Acad Sci USA 95:5311–5316

    Article  CAS  PubMed  Google Scholar 

  • Trujillo M, Ferrer-Sueta G, Radi R (2008) Peroxynitrite detoxification and its biologic implications. Antioxid Redox Signal 10:1607–1620

    Article  CAS  PubMed  Google Scholar 

  • Van Winkle LJ, Campione AL, Gorman JM (1988) Na+-independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. J Biol Chem 263:3150–3163

    PubMed  Google Scholar 

  • van Zandbergen G, Klinger M, Mueller A, Dannenberg S, Gebert A, Solbach W, Laskay T (2004) Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol 173:6521–6525

    PubMed  Google Scholar 

  • Vannier-Santos MA, Menezes D, Oliveira MF, de Mello FG (2008) The putrescine analogue 1,4-diamino-2-butanone affects polyamine synthesis, transport, ultrastructure and intracellular survival in Leishmania amazonensis. Microbiology 154:3104–3111

    Article  CAS  PubMed  Google Scholar 

  • Vickers TJ, Wyllie S, Fairlamb AH (2004a) Leishmania major elongation factor 1B complex has trypanothione S-transferase and peroxidase activity. J Biol Chem 279:49003–49009

    Article  CAS  PubMed  Google Scholar 

  • Vickers TJ, Greig N, Fairlamb AH (2004b) A trypanothione-dependent glyoxalase I with a prokaryotic ancestry in Leishmania major. Proc Natl Acad Sci USA 101:13186–13191

    Article  CAS  PubMed  Google Scholar 

  • Wallace HM (2003) Polyamines and their role in human disease—an introduction. Biochem Soc Trans 31:354–355

    Article  CAS  PubMed  Google Scholar 

  • Wallace HM (2007) Targeting polyamine metabolism: a viable therapeutic/preventative solution for cancer? Expert Opin Pharmacother 8:2109–2116

    Article  CAS  PubMed  Google Scholar 

  • Wanasen N, Soong L (2008) l-arginine metabolism and its impact on host immunity against Leishmania infection. Immunol Res 41:15–25

    Article  CAS  PubMed  Google Scholar 

  • Wanasen N, MacLeod CL, Ellies LG, Soong L (2007) l-arginine and cationic amino acid transporter 2B regulate growth and survival of Leishmania amazonensis amastigotes in macrophages. Infect Immun 75:2802–2810

    Article  CAS  PubMed  Google Scholar 

  • White MF (1985) The transport of cationic amino acids across the plasma membrane of mammalian cells. Biochim Biophys Acta 822:355–374

    CAS  PubMed  Google Scholar 

  • Wilkinson SR, Meyer DJ, Taylor MC, Bromley EV, Miles MA, Kelly JM (2002) The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin. J Biol Chem 277:17062–17071

    Article  CAS  PubMed  Google Scholar 

  • Yeramian A, Martin L, Serrat N, Arpa L, Soler C, Bertran J, McLeod C, Palacín M, Modolell M, Lloberas J, Celada A (2006) Arginine transport via cationic amino acid transporter 2 plays a critical regulatory role in classical or alternative activation of macrophages. J Immunol 176:5918–5924

    CAS  PubMed  Google Scholar 

  • Zhang P, Liu B, Kang SW, Seo MS, Rhee SG, Obeid LM (1997) Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J Biol Chem 272:30615–30618

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gianni Colotti or Andrea Ilari.

Additional information

G. Colotti and A. Ilari contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colotti, G., Ilari, A. Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids 40, 269–285 (2011). https://doi.org/10.1007/s00726-010-0630-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0630-3

Keywords

Navigation