Skip to main content

Advertisement

Log in

A review of the immunomodulatory role of dietary tryptophan in livestock and poultry

  • Minireview Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Tryptophan, a nutritionally essential amino acid, is active in the regulation of immune responses in animals. The products of tryptophan metabolism, such as indoleamine 2,3-dioxygenase, kynurenine, quinolinic acid, and melatonin, may improve immunity in an organism and induce anti-inflammatory responses. The immune tolerance processes mediated by tryptophan metabolites are not well understood. Recent studies have reported that the enzymes that break down tryptophan through the kynurenine metabolic pathway are found in numerous cell types, including immunocytes. Moreover, some tryptophan metabolites have been shown to play a role in the inhibition of T lymphocyte proliferation, elevation of immunoglobulin levels in the blood, and promotion of antigen-presenting organization in tissues. This review summarizes the effects and mechanisms of tryptophan and metabolites in immune functions in livestock and poultry. It also highlights the areas in which our understanding of the role(s) of tryptophan is incomplete and suggests possible future research that might prove of benefit to livestock and poultry producers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahern GP (2011) 5-HT and the immune system. Curr Opin Pharmacol 11(1):29–33. doi:10.1016/j.coph.2011.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson G, Seo M, Berk M, Carvalho AF, Maes M (2016) Gut Permeability and microbiota in Parkinson’s disease: role of depression, tryptophan catabolites, oxidative and nitrosative stress and melatoninergic pathways. Curr Pharm Des (in press)

  • Badawy AA (2014) The tryptophan utilization concept in pregnancy. Obstet Gynecol Sci 57(4):249–259. doi:10.5468/ogs.2014.57.4.249

    Article  PubMed  PubMed Central  Google Scholar 

  • Badawy AA (2015) Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep 35(5):e00261. doi:10.1042/bsr20150197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badawy AA, Namboodiri AM, Moffett JR (2016) The end of the road for the tryptophan depletion concept in pregnancy and infection. Clin Sci (Lond, Engl: 1979) 130(15):1327–1333. doi:10.1042/cs20160153

    Article  CAS  Google Scholar 

  • Beischlag TV, Anderson G, Mazzoccoli G (2016) Glioma: tryptophan catabolite and melatoninergic pathways link microRNA, 14-3-3, chromosome 4q35, epigenetic processes and other glioma biochemical changes. Curr Pharm Des 22(8):1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Bessede A, Gargaro M, Pallotta MT, Matino D, Servillo G, Brunacci C, Bicciato S, Mazza EM, Macchiarulo A, Vacca C, Iannitti R, Tissi L, Volpi C, Belladonna ML, Orabona C, Bianchi R, Lanz TV, Platten M, Della Fazia MA, Piobbico D, Zelante T, Funakoshi H, Nakamura T, Gilot D, Denison MS, Guillemin GJ, DuHadaway JB, Prendergast GC, Metz R, Geffard M, Boon L, Pirro M, Iorio A, Veyret B, Romani L, Grohmann U, Fallarino F, Puccetti P (2014) Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511(7508):184–190. doi:10.1038/nature13323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhutia YD, Babu E, Ganapathy V (2015) Interferon-gamma induces a tryptophan-selective amino acid transporter in human colonic epithelial cells and mouse dendritic cells. Biochim Biophys Acta 1848(2):453–462. doi:10.1016/j.bbamem.2014.10.021

    Article  CAS  PubMed  Google Scholar 

  • Bravo R, Matito S, Cubero J, Paredes SD, Franco L, Rivero M, Rodriguez AB, Barriga C (2013) Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age 35(4):1277–1285. doi:10.1007/s11357-012-9419-5

    Article  CAS  PubMed  Google Scholar 

  • Chiarugi A, Calvani M, Meli E, Traggiai E, Moroni F (2001) Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J Neuroimmunol 120(1–2):190–198

    Article  CAS  PubMed  Google Scholar 

  • Cortamira NO, Seve B, Lebreton Y, Ganier P (1991) Effect of dietary tryptophan on muscle, liver and whole-body protein-synthesis in weaned piglets-relationship to plasma-insulin. Br J Nutr 66(3):423–435

    Article  CAS  PubMed  Google Scholar 

  • Dolusic E, Larrieu P, Moineaux L, Stroobant V, Pilotte L, Colau D, Pochet L, Van den Eynde B, Masereel B, Wouters J, Frederick R (2011) Tryptophan 2,3-dioxygenase (TDO) inhibitors. 3-(2-(pyridyl)ethenyl)indoles as potential anticancer immunomodulators. J Med Chem 54(15):5320–5334. doi:10.1021/jm2006782

    Article  CAS  PubMed  Google Scholar 

  • Dourmad JY, Noblet J, Etienne M (1998) Effect of protein and lysine supply on performance, nitrogen balance, and body composition changes of sows during lactation. J Anim Sci 76(2):542–550

    Article  CAS  PubMed  Google Scholar 

  • Emadi M, Jahanshiri F, Kaveh K, Hair-Bejo M, Ideris A, Alimon AR (2011) Nutrition and immunity: the effects of the combination of arginine and tryptophan on growth performance, serum parameters and immune response in broiler chickens challenged with infectious bursal disease vaccine. Avian Pathol: J WVPA 40(1):63–72. doi:10.1080/03079457.2010.539590

    Article  CAS  Google Scholar 

  • Esteban S, Nicolaus C, Garmundi A, Rial REV, Rodriguez AB, Ortega E, Ibars CB (2004) Effect of orally administered l-tryptophan on serotonin, melatonin, and the innate immune response in the rat. Mol Cell Biochem 267(1–2):39–46. doi:10.1023/b:mcbi.0000049363.97713.74

    Article  CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9(10):1069–1077. doi:10.1038/sj.cdd.4401073

    Article  CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol (Baltim, Md: 1950) 176(11):6752–6761

    Article  CAS  Google Scholar 

  • Greilberger J, Fuchs D, Leblhuber F, Greilberger M, Wintersteiger R, Tafeit E (2010) Carbonyl proteins as a clinical marker in Alzheimer’s disease and its relation to tryptophan degradation and immune activation. Clin Lab 56(9–10):441–448

    CAS  PubMed  Google Scholar 

  • Hao K, Zhou Q, Chen W, Jia W, Zheng J, Kang J, Wang K, Duan T (2013) Possible role of the ‘IDO-AhR axis’ in maternal-foetal tolerance. Cell Biol Int 37(2):105–108. doi:10.1002/cbin.10023

    Article  CAS  PubMed  Google Scholar 

  • Harden JL, Lewis SM, Lish SR, Suarez-Farinas M, Gareau D, Lentini T, Johnson-Huang LM, Krueger JG, Lowes MA (2016) The tryptophan metabolism enzyme l-kynureninase is a novel inflammatory factor in psoriasis and other inflammatory diseases. J Allergy Clin Immunol 137(6):1830–1840. doi:10.1016/j.jaci.2015.09.055

    Article  CAS  PubMed  Google Scholar 

  • Hernandez J, Benedito JL, Abuelo A, Castillo C (2014) Ruminal acidosis in feedlot: from aetiology to prevention. Sci World J 2014:702572. doi:10.1155/2014/702572

    Google Scholar 

  • Jalili RB, Forouzandeh F, Moeenrezakhanlou A, Rayat GR, Rajotte RV, Uludag H, Ghahary A (2009) Mouse pancreatic islets are resistant to indoleamine 2,3 dioxygenase-induced general control nonderepressible-2 kinase stress pathway and maintain normal viability and function. Am J Pathol 174(1):196–205. doi:10.2353/ajpath.2009.080539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura T, Watanabe Y (2016) Tryptophan protects hepatocytes against reactive oxygen species-dependent cell death via multiple pathways including Nrf2-dependent gene induction. Amino Acids 48(5):1263–1274. doi:10.1007/s00726-016-2175-6

    Article  CAS  PubMed  Google Scholar 

  • Kolodziej L (2013) Systemic metabolism of tryptophan and its catabolites, kynurenine and 3-HAA, in mice with inflammatory arthritis. Gene 512(1):23–27. doi:10.1016/j.gene.2012.09.122

    Article  CAS  PubMed  Google Scholar 

  • Koopmans SJ, van der Staay FJ, Le Floc’h N, Dekker R, van Diepen JTM, Jansman AJM (2012) Effects of surplus dietary l-tryptophan on stress, immunology, behavior, and nitrogen retention in endotoxemic pigs. J Anim Sci 90(1):241–251. doi:10.2527/jas.2010-3372

    Article  CAS  PubMed  Google Scholar 

  • Kudo Y (2013) The role of placental indoleamine 2,3-dioxygenase in human pregnancy. Obstet Gynecol Sci 56(4):209–216. doi:10.5468/ogs.2013.56.4.209

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudo Y, Boyd CA, Sargent IL, Redman CW (2001) Tryptophan degradation by human placental indoleamine 2,3-dioxygenase regulates lymphocyte proliferation. J Physiol 535(Pt 1):207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Floc’h N, Melchior D, Seve B (2008) Dietary tryptophan helps to preserve tryptophan homeostasis in pigs suffering from lung inflammation. J Anim Sci 86(12):3473–3479. doi:10.2527/jas.2008-0999

    Article  PubMed  Google Scholar 

  • Lechner O, Dietrich H, Oliveira dos Santos A, Wiegers GJ, Schwarz S, Harbutz M, Herold M, Wick G (2000) Altered circadian rhythms of the stress hormone and melatonin response in lupus-prone MRL/MP-fas(Ipr) mice. J Autoimmun 14(4):325–333. doi:10.1006/jaut.2000.0375

    Article  CAS  PubMed  Google Scholar 

  • Li N, Ghia JE, Wang H, McClemens J, Cote F, Suehiro Y, Mallet J, Khan WI (2011) Serotonin activates dendritic cell function in the context of gut inflammation. Am J Pathol 178(2):662–671. doi:10.1016/j.ajpath.2010.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yuan JM, Zhang LS, Zhang YR, Cai SM, Yu JH, Xia ZF (2015) Effects of tryptophan supplementation on growth performance, antioxidative activity, and meat quality of ducks under high stocking density. Poult Sci 94(8):1894–1901. doi:10.3382/ps/pev155

    Article  CAS  PubMed  Google Scholar 

  • MacGillivray L, Reynolds KB, Sickand M, Rosebush PI, Mazurek MF (2011) Inhibition of the serotonin transporter induces microglial activation and downregulation of dopaminergic neurons in the substantia nigra. Synapse (New York, NY) 65(11):1166–1172. doi:10.1002/syn.20954

    Article  CAS  Google Scholar 

  • Maestroni GJ (1993) The immunoneuroendocrine role of melatonin. J Pineal Res 14(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Melchior D, Le Floc’h N, Seve B (2003) Effects of chronic lung inflammation on tryptophan metabolism in piglets. Adv Exp Med Biol 527:359–362

    Article  CAS  PubMed  Google Scholar 

  • Melchior D, Seve B, Le Floc’h N (2004) Chronic lung inflammation affects plasma amino acid concentrations in pigs. J Anim Sci 82(4):1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Mellor AL, Munn DH (2001) Extinguishing maternal immune responses during pregnancy: implications for immunosuppression. Semin Immunol 13(4):213–218. doi:10.1006/smim.2000.0317

    Article  CAS  PubMed  Google Scholar 

  • Melzer N, Wittenburg D, Hartwig S, Jakubowski S, Kesting U, Willmitzer L, Lisec J, Reinsch N, Repsilber D (2013) Investigating associations between milk metabolite profiles and milk traits of Holstein cows. J Dairy Sci 96(3):1521–1534. doi:10.3168/jds.2012-5743

    Article  CAS  PubMed  Google Scholar 

  • Mezrich JD, Fechner JH, Zhang XJ, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory t cells. J Immunol 185(6):3190–3198. doi:10.4049/jimmunol.0903670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mine Y, Zhang H (2015) Calcium-sensing receptor (CaSR)-mediated anti-inflammatory effects of l-amino acids in intestinal epithelial cells. J Agric Food Chem 63(45):9987–9995. doi:10.1021/acs.jafc.5b03749

    Article  CAS  PubMed  Google Scholar 

  • Moffett JR, Namboodiri MA (2003) Tryptophan and the immune response. Immunol Cell Biol 81(4):247–265. doi:10.1046/j.1440-1711.2003.t01-1-01177.x

    Article  CAS  PubMed  Google Scholar 

  • Pantouris G, Mowat CG (2014) Antitumour agents as inhibitors of tryptophan 2,3-dioxygenase. Biochem Biophys Res Commun 443(1):28–31. doi:10.1016/j.bbrc.2013.11.037

    Article  CAS  PubMed  Google Scholar 

  • Pilotte L, Larrieu P, Stroobant V, Colau D, Dolusic E, Frederick R, De Plaen E, Uyttenhove C, Wouters J, Masereel B, Van den Eynde BJ (2012) Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci USA 109(7):2497–2502. doi:10.1073/pnas.1113873109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee LY, Kidd BA, Robinson WH, Sobel RA, Selley ML, Steinman L (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science (New York, NY) 310(5749):850–855. doi:10.1126/science.1117634

    Article  CAS  Google Scholar 

  • Poletto R, Kretzer FC, Hotzel MJ (2014) Minimizing aggression during mixing of gestating sows with supplementation of a tryptophan-enriched diet. Physiol Behav 132:36–43. doi:10.1016/j.physbeh.2014.04.043

    Article  CAS  PubMed  Google Scholar 

  • Poormasjedi-Meibod MS, Jalili RB, Hosseini-Tabatabaei A, Hartwell R, Ghahary A (2013) Immuno-Regulatory function of indoleamine 2,3 dioxygenase through modulation of innate immune responses. PLoS One 8(8):e71044. doi:10.1371/journal.pone.0071044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, Muller AJ (2014) Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol Immunother 63(7):721–735. doi:10.1007/s00262-014-1549-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu SX, Fang ZF, De W, Lin Y, Che LQ (2011) Tryptophan supplements promote pregnancy success in mice challenged with pseudorabies virus (PRV) by regulating the expression of systemic cytokines, immunoglobulins, PRV-specific protein profiles, and toll-like receptors. J Med Food 14(7–8):857–865. doi:10.1089/jmf.2010.1146

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ (1998) Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 56(3):359–384

    Article  CAS  PubMed  Google Scholar 

  • Robertson SA, Care AS, Skinner RJ (2007) Interleukin 10 regulates inflammatory cytokine synthesis to protect against lipopolysaccharide-induced abortion and fetal growth restriction in mice. Biol Reprod 76(5):738–748. doi:10.1095/biolreprod.106.056143

    Article  CAS  PubMed  Google Scholar 

  • Rothhammer V, Mascanfroni ID, Bunse L (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. 22(6):586–597. doi:10.1038/nm.4106

    CAS  Google Scholar 

  • Ruan Z, Yang YH, Wen YM, Zhou Y, Fu XF, Ding S, Liu G, Yao K, Wu X, Deng ZY, Wu GY, Yin YL (2014) Metabolomic analysis of amino acid and fat metabolism in rats with tryptophan supplementation. Amino Acids 46(12):2681–2691. doi:10.1007/s00726-014-1823-y

    Article  CAS  PubMed  Google Scholar 

  • Rungruang S, Collier JL, Rhoads RP, Baumgard LH, de Veth MJ, Collier RJ (2014) A dose-response evaluation of rumen-protected niacin in thermoneutral or heat-stressed lactating Holstein cows. J Dairy Sci 97(8):5023–5034. doi:10.3168/jds.2013-6970

    Article  CAS  PubMed  Google Scholar 

  • Sano M, Ferchaud-Roucher V, Kaeffer B, Poupeau G, Castellano B, Darmaun D (2016) Maternal and fetal tryptophan metabolism in gestating rats: effects of intrauterine growth restriction. Amino Acids 48(1):281–290. doi:10.1007/s00726-015-2072-4

    Article  CAS  PubMed  Google Scholar 

  • Sikalidis AK (2015) Amino acids and immune response: a role for cysteine, glutamine, phenylalanine, tryptophan and arginine in T-cell function and cancer? Pathol Oncol Res: POR 21(1):9–17. doi:10.1007/s12253-014-9860-0

    Article  CAS  PubMed  Google Scholar 

  • Smith KG, Hunt JL (2004) On the use of spleen mass as a measure of avian immune system strength. Oecologia 138(1):28–31. doi:10.1007/s00442-003-1409-y

    Article  PubMed  Google Scholar 

  • Takikawa O (2005) Biochemical and medical aspects of the indoleamine 2,3-dioxygenase-initiated l-tryptophan metabolism. Biochem Biophys Res Commun 338(1):12–19. doi:10.1016/j.bbrc.2005.09.032

    Article  CAS  PubMed  Google Scholar 

  • Trevisi P, Melchior D, Mazzoni M, Casini L, De Filippi S, Minieri L, Lalatta-Costerbosa G, Bosi P (2009) A tryptophan-enriched diet improves feed intake and growth performance of susceptible weanling pigs orally challenged with Escherichia coli K88. J Anim Sci 87(1):148–156. doi:10.2527/jas.2007-0732

    Article  CAS  PubMed  Google Scholar 

  • van ENJ, Loest CA, Ferreira AV, Waggoner JW, Mathis CP (2008) Limiting amino acids for growing lambs fed a diet low in ruminally undegradable protein. J Anim Sci 86(10):2627–2641. doi:10.2527/jas.2007-0771

    Article  Google Scholar 

  • Wang J, Zhao YF, Fang ZF, Lin Y, Che LQ, Yang M, Wu D (2013) Effects of dietary threonine and tryptophan on immune response of growing pigs inoculated porcine reproductive and respiratory syndrome modified live virus vaccine. Chin J Anim Nutr 25(6):1189–1198. doi:10.3969/j.issn.1006-267x.2013.06.010

    CAS  Google Scholar 

  • Wei ZY, Wang L, Ji Y, Yu LH, Pan XH, Wang MZ, Wang HR (2011) Effects of dietary tryptophan supplementation and feed restriction on growth performance and carcass characteristics of goslings. J Anim Vet Adv 10(16):2079–2083

    Article  CAS  Google Scholar 

  • Weinlich G, Murr C, Richardsen L, Winkler C, Fuchs D (2007) Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients. Dermatology 214(1):8–14. doi:10.1159/000096906

    Article  PubMed  Google Scholar 

  • Widner B, Leblhuber F, Walli J, Tilz GP, Demel U, Fuchs D (2000) Tryptophan degradation and immune activation in Alzheimer’s disease. J Neural Transm 107(3):343–353. doi:10.1007/s007020050029

    Article  CAS  PubMed  Google Scholar 

  • Willemen SA, Che L, Dewilde S, Van Hauwaert ML, De Vos M, Huygelen V, Fransen E, Tambuyzer BR, Casteleyn C, Van Cruchten S, Van Ginneken C (2014) Enteric and serological distribution of serotonin and its precursor tryptophan in perinatal low and normal weight piglets. Anim: Int J Anim Biosci 8(5):792–799. doi:10.1017/s1751731114000317

    Article  CAS  Google Scholar 

  • Woodger TL, Sirek A, Anderson GH (1979) DiabetesI, dietary tryptophan, and protein-intake regulation in weanling rats. Am J Physiol 236(5):R307–R311

    CAS  PubMed  Google Scholar 

  • Wu GY (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1–17. doi:10.1007/s00726-009-0269-0

    Article  PubMed  Google Scholar 

  • Xu J, Yao N, Li YD (2011) T-cell proliferation is inhibited by the induction of indoleamine 2,3-dioxygenase in spleen-derived dendritic cells in rat. Chin Med J 124(19):3154–3158. doi:10.3760/cma.j.issn.0366-6999.2011.19.035

    CAS  PubMed  Google Scholar 

  • Yao K, Fang J, Yin YL, Feng ZM, Tang ZR, Wu G (2011) Tryptophan metabolism in animals: important roles in nutrition and health. Front Biosci (Sch Ed) 3:286–297

    Google Scholar 

  • Zhu BT (2010) Development of selective immune tolerance towards the allogeneic fetus during pregnancy: role of tryptophan catabolites (review). Int J Mol Med 25(6):831–835. doi:10.3892/ijmm_00000411

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express sincere gratitude to the National Natural Science Foundation of China (31501964; 31402088) for fulfillment of the research. The research was also funded by a research program of State Key Laboratory of Food Science and Technology, Nanchang University (Project No. SKLF-ZZB-201509), Key research and development program of Shandong province (2015STS007) and the Chinese Academy of Science STS Project (KFJ-EW-STS-063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongnan Liu or Yinlong Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Informed consent

No human or animal experiments were required by any of the authors to write this review article.

Additional information

Handling Editor: C.-A. A. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, M., Liu, H., Xu, K. et al. A review of the immunomodulatory role of dietary tryptophan in livestock and poultry. Amino Acids 49, 67–74 (2017). https://doi.org/10.1007/s00726-016-2351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2351-8

Keywords

Navigation